1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kirill [66]
3 years ago
12

PLEASE SOMEONE HELP ME ON THIS

Mathematics
2 answers:
goldenfox [79]3 years ago
7 0
I think the answer for D(n) = 50 ( 3(2) - 2(3) )
Let me know if I'm wrong
Hope it helps ;))
Maksim231197 [3]3 years ago
5 0
Start by figuring out which number is bigger.
f(3) = 150*(2)^3
f(3) = 150* 8
f(3) =1200

g(3) = 100*(3)^3
g(3) = 100*27
g(3) = 2700

Conclusion: g(n) is larger. That's not really the question. The question is how do you enter the data? What they are trying to make you do is stop at the end of the first line and take out the common factor like this
g(n) - f(n) = 100*3^n- 150*2^n The common factor is 50, so it looks like this.
g(n) - f(n) = 50 * (2*3^n - 3*2^n)

So the small box on the left should be 50 
The box in brackets should be (2*3^n - 3*2^n)

Where does this course come from? The problem in not math. The problem is reading.
You might be interested in
For any triangle ABC note down the sine and cos theorems ( sinA/a= sinB/b etc..)
SCORPION-xisa [38]

Answer:

Step-by-step explanation:

Law of sines is:

(sin A) / a = (sin B) / b = (sin C) / c

Law of cosines is:

c² = a² + b² − 2ab cos C

Note that a, b, and c are interchangeable, so long as the angle in the cosine corresponds to the side on the left of the equation (for example, angle C is opposite of side c).

Also, angles of a triangle add up to 180° or π.

(i) sin(B−C) / sin(B+C)

Since A+B+C = π, B+C = π−A:

sin(B−C) / sin(π−A)

Using angle shift property:

sin(B−C) / sin A

Using angle sum/difference identity:

(sin B cos C − cos B sin C) / sin A

Distribute:

(sin B cos C) / sin A − (cos B sin C) / sin A

From law of sines, sin B / sin A = b / a, and sin C / sin A = c / a.

(b/a) cos C − (c/a) cos B

From law of cosines:

c² = a² + b² − 2ab cos C

(c/a)² = 1 + (b/a)² − 2(b/a) cos C

2(b/a) cos C = 1 + (b/a)² − (c/a)²

(b/a) cos C = ½ + ½ (b/a)² − ½ (c/a)²

Similarly:

b² = a² + c² − 2ac cos B

(b/a)² = 1 + (c/a)² − 2(c/a) cos B

2(c/a) cos B = 1 + (c/a)² − (b/a)²

(c/a) cos B = ½ + ½ (c/a)² − ½ (b/a)²

Substituting:

[ ½ + ½ (b/a)² − ½ (c/a)² ] − [ ½ + ½ (c/a)² − ½ (b/a)² ]

½ + ½ (b/a)² − ½ (c/a)² − ½ − ½ (c/a)² + ½ (b/a)²

(b/a)² − (c/a)²

(b² − c²) / a²

(ii) a (cos B + cos C)

a cos B + a cos C

From law of cosines, we know:

b² = a² + c² − 2ac cos B

2ac cos B = a² + c² − b²

a cos B = 1/(2c) (a² + c² − b²)

Similarly:

c² = a² + b² − 2ab cos C

2ab cos C = a² + b² − c²

a cos C = 1/(2b) (a² + b² − c²)

Substituting:

1/(2c) (a² + c² − b²) + 1/(2b) (a² + b² − c²)

Common denominator:

1/(2bc) (a²b + bc² − b³) + 1/(2bc) (a²c + b²c − c³)

1/(2bc) (a²b + bc² − b³ + a²c + b²c − c³)

Rearrange:

1/(2bc) [a²b + a²c + bc² + b²c − (b³ + c³)]

Factor (use sum of cubes):

1/(2bc) [a² (b + c) + bc (b + c) − (b + c)(b² − bc + c²)]

(b + c)/(2bc) [a² + bc − (b² − bc + c²)]

(b + c)/(2bc) (a² + bc − b² + bc − c²)

(b + c)/(2bc) (2bc + a² − b² − c²)

Distribute:

(b + c)/(2bc) (2bc) + (b + c)/(2bc) (a² − b² − c²)

(b + c) + (b + c)/(2bc) (a² − b² − c²)

From law of cosines, we know:

a² = b² + c² − 2bc cos A

2bc cos A = b² + c² − a²

cos A = (b² + c² − a²) / (2bc)

-cos A = (a² − b² − c²) / (2bc)

Substituting:

(b + c) + (b + c)(-cos A)

(b + c)(1 − cos A)

From half angle formula, we can rewrite this as:

2(b + c) sin²(A/2)

(iii) (b + c) cos A + (a + c) cos B + (a + b) cos C

From law of cosines, we know:

cos A = (b² + c² − a²) / (2bc)

cos B = (a² + c² − b²) / (2ac)

cos C = (a² + b² − c²) / (2ab)

Substituting:

(b + c) (b² + c² − a²) / (2bc) + (a + c) (a² + c² − b²) / (2ac) + (a + b) (a² + b² − c²) / (2ab)

Common denominator:

(ab + ac) (b² + c² − a²) / (2abc) + (ab + bc) (a² + c² − b²) / (2abc) + (ac + bc) (a² + b² − c²) / (2abc)

[(ab + ac) (b² + c² − a²) + (ab + bc) (a² + c² − b²) + (ac + bc) (a² + b² − c²)] / (2abc)

We have to distribute, which is messy.  To keep things neat, let's do this one at a time.  First, let's look at the a² terms.

-a² (ab + ac) + a² (ab + bc) + a² (ac + bc)

a² (-ab − ac + ab + bc + ac + bc)

2a²bc

Repeating for the b² terms:

b² (ab + ac) − b² (ab + bc) + b² (ac + bc)

b² (ab + ac − ab − bc + ac + bc)

2ab²c

And the c² terms:

c² (ab + ac) + c² (ab + bc) − c² (ac + bc)

c² (ab + ac + ab + bc − ac − bc)

2abc²

Substituting:

(2a²bc + 2ab²c + 2abc²) / (2abc)

2abc (a + b + c) / (2abc)

a + b + c

8 0
3 years ago
Rosa and her friends are eating out for dinner. the bill was $30.12. they want to leave a 19% tip.
FromTheMoon [43]

Answer:

35.84

Step-by-step explanation:

You would take 19% of 30.12$ by doing 30.12x0.19 to get 5.72.

you then add 5.72 to 30.12 to get your total of 35.84$

7 0
2 years ago
HELPPPPPPPPPPPPPPPPPPPPPPPPPPPP PLEASEEEEEEEEEEEEEEEEEEEEEEEEEEEEE
meriva
Add all the number then multiply by 1,000
8 0
3 years ago
Read 2 more answers
Rihanna has 5 less than 2 times as many homework problems to complete as her friend Terrika. The total number of homework proble
wariber [46]

Answer: 19=5x times 2

Step-by-step explanation:

5 0
2 years ago
-5x + y = -6 <br><br>7x + 2y = 39
storchak [24]

Answer:

so i don't know if they are separate math problems but for the first question i got M=5 and the second question i got M=-7/2

Step-by-step explanation:

hope this helps please mark brainliest

6 0
3 years ago
Other questions:
  • XO
    13·1 answer
  • What percent of 65 is 13?
    15·2 answers
  • What is the volume of 5 10 and 10
    10·2 answers
  • BRAINLIEST WILL BE AWARDED TO THE FIRST CORRECT ANSWER!
    10·1 answer
  • Christian has a collection of 18 shark teeth. He identified them as 6 tiger shark teeth, 8 sand shark teeth, and the rest as bul
    9·2 answers
  • Find the x-intercept of the graph of the function y=3/2x-6
    9·1 answer
  • One car is selected at random from the cars with vehicle tags from these cities.
    14·1 answer
  • If each side of a square patio is increased by 4 feet, the area of the patio would be 196 square feet. Solve the equation (s+4)2
    5·1 answer
  • PLEASE ANSWER THE PIC BELOW (answer a, b and c)
    5·1 answer
  • What is the value of |y|+4- y* x if x = 7 and y = -2?
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!