let's firstly convert the mixed fractions to improper fractions and then divide.
![\bf \stackrel{mixed}{1\frac{1}{4}}\implies \cfrac{1\cdot 4+1}{4}\implies \stackrel{improper}{\cfrac{5}{4}}~\hfill \stackrel{mixed}{3\frac{4}{5}}\implies \cfrac{3\cdot 5+4}{5}\implies \stackrel{improper}{\cfrac{19}{5}} \\\\[-0.35em] ~\dotfill\\\\ \cfrac{5}{4}\div\cfrac{19}{5}\implies \cfrac{5}{4}\cdot \cfrac{5}{19}\implies \cfrac{25}{76}](https://tex.z-dn.net/?f=%5Cbf%20%5Cstackrel%7Bmixed%7D%7B1%5Cfrac%7B1%7D%7B4%7D%7D%5Cimplies%20%5Ccfrac%7B1%5Ccdot%204%2B1%7D%7B4%7D%5Cimplies%20%5Cstackrel%7Bimproper%7D%7B%5Ccfrac%7B5%7D%7B4%7D%7D~%5Chfill%20%5Cstackrel%7Bmixed%7D%7B3%5Cfrac%7B4%7D%7B5%7D%7D%5Cimplies%20%5Ccfrac%7B3%5Ccdot%205%2B4%7D%7B5%7D%5Cimplies%20%5Cstackrel%7Bimproper%7D%7B%5Ccfrac%7B19%7D%7B5%7D%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%5Ccfrac%7B5%7D%7B4%7D%5Cdiv%5Ccfrac%7B19%7D%7B5%7D%5Cimplies%20%5Ccfrac%7B5%7D%7B4%7D%5Ccdot%20%5Ccfrac%7B5%7D%7B19%7D%5Cimplies%20%5Ccfrac%7B25%7D%7B76%7D)
X = 45.
Since opposite exterior angles are congruent, you can set the 2 values equal to each other. When you solve for x, you should get 45.
Answer:
No
Step-by-step explanation:
For a number to be divisible by 10 it has to end in 0.
Answer:
No
Step-by-step explanation: The first one is positive and the second one is negative