Answer:
exactly one, 0's, triangular matrix, product and 1.
Step-by-step explanation:
So, let us first fill in the gap in the question below. Note that the capitalized words are the words to be filled in the gap and the ones in brackets too.
"An elementary ntimesn scaling matrix with k on the diagonal is the same as the ntimesn identity matrix with EXACTLY ONE of the (0's) replaced with some number k. This means it is TRIANGULAR MATRIX, and so its determinant is the PRODUCT of its diagonal entries. Thus, the determinant of an elementary scaling matrix with k on the diagonal is (1).
Here, one of the zeros in the identity matrix will surely be replaced by one. That is to say, the determinants = 1 × 1 × 1 => 1. Thus, it is a a triangular matrix.
Answer:
r=5
Step-by-step explanation:
5x5x5=125
Answer:
(a) 0.5899
(b) 0.9166
Step-by-step explanation:
Let X be the random variable that represents the height of a woman. Then, X is normally distributed with
= 62.5 in
= 2.2 in
the normal probability density function is given by
, then
(a)
= 0.5899
(in the R statistical programming language) pnorm(63, mean = 62.5, sd = 2.2)
(b) We are seeking
where n = 37.
is normally distributed with mean 62.5 in and standard deviation
. So, the probability density function is given by
, and
= 0.9166
(in the R statistical programming language) pnorm(63, mean = 62.5, sd = 2.2/sqrt(37))
You can use a table from a book to find the probabilities or a programming language like the R statistical programming language.
$72.
20% of 60 is 12
$12 + $60 = $72