Answer:
X = -2
Step-by-step explanation:
Hope this helps
Answer:
![v_1=(\frac{1}{10},-\frac{3}{10})](https://tex.z-dn.net/?f=v_1%3D%28%5Cfrac%7B1%7D%7B10%7D%2C-%5Cfrac%7B3%7D%7B10%7D%29)
![v_2=(-\frac{1}{10},\frac{3}{10})](https://tex.z-dn.net/?f=v_2%3D%28-%5Cfrac%7B1%7D%7B10%7D%2C%5Cfrac%7B3%7D%7B10%7D%29)
Step-by-step explanation:
First we define two generic vectors in our
space:
![v_1 = (x_1,y_1)](https://tex.z-dn.net/?f=v_1%20%3D%20%28x_1%2Cy_1%29)
![v_2 = (x_2,y_2)](https://tex.z-dn.net/?f=v_2%20%3D%20%28x_2%2Cy_2%29)
By definition we know that Euclidean norm on an 2-dimensional Euclidean space
is:
![\left \| v \right \|= \sqrt{x^2+y^2}](https://tex.z-dn.net/?f=%5Cleft%20%5C%7C%20v%20%5Cright%20%5C%7C%3D%20%5Csqrt%7Bx%5E2%2By%5E2%7D)
Also we know that the inner product in
space is defined as:
![v_1 \bullet v_2 = (x_1,y_1) \bullet(x_2,y_2)= x_1x_2+y_1y_2](https://tex.z-dn.net/?f=v_1%20%5Cbullet%20v_2%20%3D%20%28x_1%2Cy_1%29%20%5Cbullet%28x_2%2Cy_2%29%3D%20x_1x_2%2By_1y_2)
So as first condition we have that both two vectors have Euclidian Norm 1, that is:
![\left \| v_1 \right \|= \sqrt{x^2+y^2}=1](https://tex.z-dn.net/?f=%5Cleft%20%5C%7C%20v_1%20%5Cright%20%5C%7C%3D%20%5Csqrt%7Bx%5E2%2By%5E2%7D%3D1)
and
![\left \| v_2 \right \|= \sqrt{x^2+y^2}=1](https://tex.z-dn.net/?f=%5Cleft%20%5C%7C%20v_2%20%5Cright%20%5C%7C%3D%20%5Csqrt%7Bx%5E2%2By%5E2%7D%3D1)
As second condition we have that:
![v_1 \bullet (3,1) = (x_1,y_1) \bullet(3,1)= 3x_1+y_1=0](https://tex.z-dn.net/?f=v_1%20%5Cbullet%20%283%2C1%29%20%3D%20%28x_1%2Cy_1%29%20%5Cbullet%283%2C1%29%3D%203x_1%2By_1%3D0)
![v_2 \bullet (3,1) = (x_2,y_2) \bullet(3,1)= 3x_2+y_2=0](https://tex.z-dn.net/?f=v_2%20%5Cbullet%20%283%2C1%29%20%3D%20%28x_2%2Cy_2%29%20%5Cbullet%283%2C1%29%3D%203x_2%2By_2%3D0)
Which is the same:
![y_1=-3x_1\\y_2=-3x_2](https://tex.z-dn.net/?f=y_1%3D-3x_1%5C%5Cy_2%3D-3x_2)
Replacing the second condition on the first condition we have:
![\sqrt{x_1^2+y_1^2}=1 \\\left | x_1^2+y_1^2 \right |=1 \\\left | x_1^2+(-3x_1)^2 \right |=1 \\\left | x_1^2+9x_1^2 \right |=1 \\\left | 10x_1^2 \right |=1 \\x_1^2= \frac{1}{10}](https://tex.z-dn.net/?f=%5Csqrt%7Bx_1%5E2%2By_1%5E2%7D%3D1%20%5C%5C%5Cleft%20%7C%20x_1%5E2%2By_1%5E2%20%5Cright%20%7C%3D1%20%5C%5C%5Cleft%20%7C%20x_1%5E2%2B%28-3x_1%29%5E2%20%5Cright%20%7C%3D1%20%5C%5C%5Cleft%20%7C%20x_1%5E2%2B9x_1%5E2%20%5Cright%20%7C%3D1%20%5C%5C%5Cleft%20%7C%2010x_1%5E2%20%5Cright%20%7C%3D1%20%5C%5Cx_1%5E2%3D%20%5Cfrac%7B1%7D%7B10%7D)
Since
we have two posible solutions,
or
. If we choose
, we can choose next the other solution for
.
Remembering,
![y_1=-3x_1\\y_2=-3x_2](https://tex.z-dn.net/?f=y_1%3D-3x_1%5C%5Cy_2%3D-3x_2)
The two vectors we are looking for are:
![v_1=(\frac{1}{10},-\frac{3}{10})\\v_2=(-\frac{1}{10},\frac{3}{10})](https://tex.z-dn.net/?f=v_1%3D%28%5Cfrac%7B1%7D%7B10%7D%2C-%5Cfrac%7B3%7D%7B10%7D%29%5C%5Cv_2%3D%28-%5Cfrac%7B1%7D%7B10%7D%2C%5Cfrac%7B3%7D%7B10%7D%29)