Answer:
The maximum height reached by the ball is 16.35 m.
Explanation:
Given;
initial velocity of the ball, u = 17.9 m/s
the final velocity of the ball at the maximum height, v = 0
The maximum height reached by the ball is given by;
v² = u² + 2gh
During upward motion, gravity is negative
v² = u² + 2(-g)h
v² = u² - 2gh
0 = u² - 2gh
2gh = u²
h = u² / 2g
h = (17.9)² / (2 x 9.8)
h = 16.35 m
Ttherefore, the maximum height reached by the ball is 16.35 m.
Answer: In the 5th dimension, they who claim to know, say that there is only one time, including the past and the future.
The answer is going to be leaves.
Answer:
265 J
Explanation:
where KE is kinetic energy, PE is potential energy, m is the mass of an object, v is the speed, h is the height and g is acceleration due to gravity.
Substituting 19.7 Kg for mass, 0.934 for h, 2.93 for v and 9.81 for g then

Answer:
I = 0.636*Imax
Explanation:
(a) To find the fraction of the maximum intensity at a distance y from the central maximum you use the following formula:
(1)
I: intensity of light
Imax: maximum intensity of light
d: separation between slits = 0.200mm = 0.200 *10^-3 m
L: distance from the screen = 613cm = 0.613 m
y: distance to the central peak of the interference pattern
λ: wavelength of light = 656.3 nm = 656.3 *10^-9 m
You replace the values of all variables in the equation (1):

Hence, the fraction of the maximum intensity is I = 0.636*Imax