Answer:
[ 2.67 , 1 ] m
Explanation:
Given:-
- The side lengths of the rods are as follows:
a = 4 m , b = 4 m , c = 5 m
a = Base , b = Perpendicular , c = Hypotenuse
- All rods are made of same material with uniform density. With
Find:-
Find the coordinates of the center of mass of the triangle.
Solution:-
- The center of mass of any triangle is at the intersection of its medians.
- So let’s say we have a triangle with vertices at points (0,0) , (a,0) , and (0,b).
- Median from (0,0) to midpoint (a/2,b/2) of opposite side has equation:
bx−ay=0
- Median from (a,0) to midpoint (0,b/2) of opposite side has equation:
bx+2ay=ab
- Median from (0,b) to midpoint (a/2,0) of opposite side has equation:
2bx+ay=ab
- Solve all three equations simultaneously:
bx−ay=0 , bx = ay
ay + 2ay = ab , 3ay = ab , y = b/3
bx = b/3
x = a / 3
- So the distance from the median to each leg of the triangle is 1/3 length of other leg.
- So the coordinates of the centroid for right angle triangle would be:
[ 2a/3 , b/3 ]
[ 2.67 , 1 ] m
Answer:
Force on front axle = 6392.85 N
Force on rear axle = 8616.45 N
Explanation:
As we know that the weight of the car is balanced by the normal force on the front wheel and rear wheels
Now we know that



now we know that distance between the axis is 2.70 m and centre of mass is 1.15 m behind front axle
so we can write torque balance about its center of mass


now from above equation

now we have

now the other force is given as

The First Law describes how an object acts when no force is acting upon it. So, rockets stay still until a force is applied to move them. Likewise, once they're in motion, they won't stop until a force is applied. Newton's Second Law tells us that the more mass an object has, the more force is needed to move it. A larger rocket will need stronger forces (eg. more fuel) to make it accelerate. The space shuttles required seven pounds of fuel for every pound of payload they carry. Newton's Third Law states that "every action has an equal and opposite reaction". In a rocket, burning fuel creates a push on the front of the rocket pushing it forward.
. . . . . not zero .
Note: "... unbalanced" would be a terrible answer.
In order to make his measurements for determining the Earth-Sun distance, Aristarchus waited for the Moon's phase to be exactly half full while the Sun was still visible in the sky. For this reason, he chose the time of a half (quarter) moon.
<h3 /><h3>How did Aristarchus calculate the distance to the Sun?</h3>
It was now possible for another Greek astronomer, Aristarchus, to attempt to determine the Earth's distance from the Sun after learning the distance to the Moon. Aristarchus discovered that the Moon, the Earth, and the Sun formed a right triangle when they were all equally illuminated. Now that he was aware of the distance between the Earth and the Moon, all he needed to know to calculate the Sun's distance was the current angle between the Moon and the Sun. It was a wonderful argument that was weakened by scant evidence. Aristarchus calculated this angle to be 87 degrees using only his eyes, which was not far off from the actual number of 89.83 degrees. But when there are significant distances involved, even slight inaccuracies might suddenly become significant. His outcome was more than a thousand times off.
To know more about how Aristarchus calculate the distance to the Sun, visit:
brainly.com/question/26241069
#SPJ4