Answer:
Check the explanation
Step-by-step explanation:
where the letter D is the diagonal matrix with diagonal entries λ1,…,λn. Now let's assume V is invertible, that is, this particular given eigenvectors are linearly independent, you get M=VDV−1.
Kindly check the attached image below to see the step by step explanation to the question above.
Answer:
x=36
Step-by-step explanation:
So, lets go over what we know:
16 is equal to 4/9ths of x.
As a equation, this looks like:

We can begin to solve for x by multiplying both sides by the denominator, 9, which gets us:

=

Then we can divide by the coefficent of x, which is 4, to get our answer:

=

This is our answer! Hope this helps! :3
1. What is an equation of a line, in point-slope form, that passes through (1,-7) and has a slope of -2/3?
Point Slope form y − y1 = m(x − x1)
Y1: -7 x1:1 slope :-2/3
Y-(-7)=-2/3(x-1)
Y+7=-2/3(x-1)
2. What is the equation of a line, in point-slope form, that passes through (-2,-6) and had a slope of 1/3?
Y-(-6)=1/3(x-(-2))
Y+6=1/3(x+2)
3.What is an equation in point-slope form of the line that passes through the points (4,5) and (-3,-1)
SlopeM: =change in y/change in x
M= -1-5/-3-4
M= -6/-7
M=6/7
So now slope:6/7, point (4,5)
Y-y1=m(x-x1)
Equation in point slope
Y-5=6/7(x-4)
Answer:
<em>Since the profit is positive, Rebotar not only broke even, they had earnings.</em>
Step-by-step explanation:
<u>Function Modeling</u>
The costs, incomes, and profits of Rebotar Inc. can be modeled by means of the appropriate function according to known conditions of the market.
It's known their fixed costs are $3,450 and their variable costs are $12 per basketball produced and sold. Thus, the total cost of Rebotar is:
C(x) = 12x + 3,450
Where x is the number of basketballs sold.
It's also known each basketball is sold at $25, thus the revenue (income) function is:
R(x) = 25x
The profit function is the difference between the costs and revenue:
P(x) = 25x - (12x + 3,450)
Operating:
P(x) = 25x - 12x - 3,450
P(x) = 13x - 3,450
If x=300 basketballs are sold, the profits are:
P(300) = 13(300) - 3,450
P(300) = 3,900 - 3,450
P(300) = 450
Since the profit is positive, Rebotar not only broke even, they had earnings.