Answer:
The length of the sides of the square is 9.0015
Step-by-step explanation:
Given
The diagonal of a square = 12.73
Required
The length of its side
Let the length and the diagonal of the square be represented by L and D, respectively.
So that
D = 12.73
The relationship between the diagonal and the length of a square is given by the Pythagoras theorem as follows:

Solving further, we have

Divide both sides by 2


Take Square root of both sides


Reorder

Now, the value of L can be calculated by substituting 12.73 for D




(Approximated)
Hence, the length of the sides of the square is approximately 9.0015
Find the length of a side of a square with an area of 169 in^2.
Answer:
D. 13 in
Step-by-step explanation:
A square has sides of equal length.
A = L^2 where: A = area and L = side
L^2 = 169
L=√169
L=13 in^2.
Answer:

Step-by-step explanation:



Answer with explanation:
The given statement is which we have to prove by the principal of Mathematical Induction

1.→For, n=1
L H S =2
R H S=1
2>1
L H S> R H S
So,the Statement is true for , n=1.
2.⇒Let the statement is true for, n=k.

---------------------------------------(1)
3⇒Now, we will prove that the mathematical statement is true for, n=k+1.

Hence it is true for, n=k+1.
So,we have proved the statement with the help of mathematical Induction, which is
