<span>In the question ' which of the following most likely require intermolecular force', options A and C given are definitely not the correct answers. Among the items listed in the questions, the one that will most likely required an intermolecular force is a rock maintaing its solid shape. Thus, the correct option is B. Intermolecular forces are forces which maintain chemical interactions between molecules of a particular susbstance and other types of paticles that may be present in the substance. Rocks are made up of differet particles and their structures are held together by different types of intermolecular forces depending on the types of particles present in the rock. Intermolecular forces can only occur among molecules and other particles in a compound that is why the other two options are wrong. Intermolecular force can either be attractive or repulsive. Attraction occurs between molecules of opposite charges, that is, positive and negative charges while repulsion occurs between particles of like charges, for intstance, between positive and positive charges. The Intermolecular forces that exist in a compound maintaings the integrity of the structure of that compound. Intermolecular forces in compounds exist in different forms, we have electrovalent bonds, covalent bonds, hydrogen bond, vander waals forces, etc. The type of molecules that exist in a compound will determine the type of intermolecular forces that will exist among the molecules of that substance. Electrovalent bonds are the strongest type of intermolecular force and it normally exist between metals and non metals. Covalent bonds involved sharing of electrons among the participating elements while vander waals forces are the weakest form of intermolecular forces. Forces are often required to break intermolecular forces apart. Breaking the intermolecular forces apart will destroy the structure of the substance inlvolved.</span>
Answer:
see explanation
Explanation:
To determine limiting reactant divide mole quantities of reactants by the respective coefficient in the balanced equation. The smaller value is the limiting reactant.
P₄ + 5O₂ => 2P₂O₅
12/1 = 12 15/5 = 3
O₂ is the limiting reactant. P₄ will be in excess when rxn stops.
Answer:
To help determine what type of rock it is
Explanation:
Geologists can use information such as color, hardness, grain size, texture and other aspects of the rock to figure out the classification of a rock. for example, a light blue rock with no visible grain that is translucent and has a hardness of 9 is most likely going to be a saphire. hope this helps!!!!
Saturn has the most extensive ring system in our solar system & most of the particles floating around in the ring are ice...
Answer=Saturn
The answer is-
is octahedral in electronic and molecular geometry with 6 Fluorine atoms bonded to central atom S.
Lewis structures are the diagrams in which the valence electrons of the atoms of a compound are arranged around the atoms showing the bonding between the atom and the lone pair of electrons existing in the molecule.
Determine the molecular geometry of
.
- Valence Shell Electron Pair Repulsion theory is commonly known as VSEPR theory and it helps to predict the geometry of molecules.
- According to this theory, electrons are arranged around the central atom of the molecule in such a way that there is minimum electrostatic repulsion between these electrons.
- Now, calculate the total number of valence electrons in
.

Valence electrons of S = 6
Valence electrons of F = 7
Thus, the valence electrons in
are-

- The Lewis structure of
is - (Image attached). - In the structure, the number of atoms bonded to central atom (S) = 6.
- Number of non-bonding electron pairs on the central atom = 0 (as all the valence electrons are bonded to F).
- Electronic geometry in case of 6 bond pairs is octahedral.
- Molecular geometry us also octahedral with bond angles 90°.
- Central atom is sp3d2 hybridised.
is a non-polar molecule.
To learn more about Lewis structures visit:
brainly.com/question/12307841?referrer=searchResults
#SPJ4