Answer;
The partial negative charge on oxygen would stick out less and be less able to participate in hydrogen bonding.
Explanation;
Water is a polar molecule because the electrons are not shared equally, they're closer to the oxygen atom than the hydrogen.
-Normally, the water molecule is a bent shape because of the pair of lone electrons - they repulse each other and exert a compression to the hydrogen atoms at a slight 104º angle. It is a bent molecular geometry that results from tetrahedral electron pair geometry.
-The 2 lone electron pairs exerts a little extra repulsion on the two bonding hydrogen atoms to create a slight compression to a 104 degrees bond angle. Therefore, the water molecule is bent molecular geometry because the lone electron pairs.
Thus, If water were a linear molecule like co2, electrostatic interactions between water molecules would be much weaker, then the partial negative charge on oxygen would stick out less and be less able to participate in hydrogen bonding.
(1) The melting of a crystalline solid is best depicted by the second graph. This is because, the second graph shows a horizontal line which means that for a while there was no change in temperature. This zone is the latent heat of fusion.
(2) The first graph shows the graph of a solid that is just heated but does not experience phase change. However, the second graph shows a solid that changes phase (from crystal/solid to liquid).
60 g C2H6 × 1 mol C2H6 x 7 mol O2 x 32 g O2 = ~223.5 g O2
30.068 g 2 mol C2H6 1 mol O2
I have posted the answetr in this picture.
Solid liquid and gas is the answer