Answer:
d. One single bond and two double bonds.
Explanation:
The octate rule is a chemical rule in which the atoms prefer to have eight electrons in the valence shell. Where a single bond provide two electrons and a double bond provide 4 electrons. Thus:
a. Two double bonds
. Two double bonds provide 8 electrons. Octate rule <em>is not </em>violated
b. Three single bonds and one pair of electrons
. Three single bonds provide 6 electrons and one pair of electrons provide two electrons. Thus, you have eight electrons and octate rule <em>is not</em> violated
c. Two single bonds and one double bond
. Two single bonds provide four electrons and one double bond 4. Thus, you have eight electrons and octate rule <em>is not </em>violated.
d. One single bond and two double bonds. One single bond provides two electrons and two double bonds 8. Thus, you have 10 electrons and <em>octate rule is violated.</em>
e. Four single bonds. Four single bonds provide 8 electrons. Octate rule<em> is not </em>violated.
I hope it helps!
Answer:
[Ne] 2s2 2p3
Explanation:
Phosphorus will most likely have an ion that will be 3- because it wants to have a full outer shell. Thus, the elctron configuration is: 1s2 2s2 2p6 3s2 3p3.
Given :
Some compounds :
.
To Find :
Which of the following compounds has the most deshielded protons .
Solution :
Deshielded means nucleus whose chemical shift has been increased due to removal of electron density, magnetic induction, or other effects .
In simple words deshielding means the ability to shift protons .
Now , among Cl , I , Br and H . Cl is the most electron negative .
Therefore , deshielding will be more in
.
Hence , this is the required solution .
Answer:
Both are highly reactive.
Explanation:
A has 1 valence electron D has 3
A is sodium D is aluminum
Answer:
Explanation: The strengths of the inter molecular forces varies as follows -

The normal boiling point of CSe2 is 125°C and that of CS2 is 116°C, which explains the trend that as we move down the group, the boiling point of e compound increases as the size increases.
This usually happens because larger and heavier atoms have a tendency to exhibit greater inter molecular strengths due to the increase in size . As the size increases, the valence shell electrons move far away from the nucleus, thus has a greater tendency to attract the temporary dipoles.
And larger the inter molecular forces, more tightly the electrons will be held to each other and thus more thermal energy would be required to break the bonds between them.