Answer:
6.4 × 10^-10 M
Explanation:
The molar solubility of the ions in a compound can be calculated from the Ksp (solubility constant).
CaF2 will dissociate as follows:
CaF2 ⇌Ca2+ + 2F-
1 mole of Calcium ion (x)
2 moles of fluorine ion (2x)
NaF will also dissociate as follows:
NaF ⇌ Na+ + F-
Where Na+ = 0.25M
F- = 0.25M
The total concentration of fluoride ion in the solution is (2x + 0.25M), however, due to common ion effect i.e. 2x<0.25, 2x can be neglected. This means that concentration of fluoride ion will be 0.25M
Ksp = {Ca2+}{F-}^2
Ksp = {x}{0.25}^2
4.0 × 10^-11 = 0.25^2 × x
4.0 × 10^-11 = 0.0625x
x = 4.0 × 10^-11 ÷ 6.25 × 10^-2
x = 4/6.25 × 10^ (-11+2)
x = 0.64 × 10^-9
x = 6.4 × 10^-10
Therefore, the molar solubility of CaF2 in NaF solution is 6.4 × 10^-10M
Answer:

Explanation:
We are asked to find the volume of a solution given the moles of solute and molarity.
Molarity is a measure of concentration in moles per liter. It is calculated using the following formula:

We know there are 0.14 moles of potassium chloride (KCl), which is the solute. The molarity of the solution is 1.8 molar or 1.8 moles of potassium chloride per liter.
- moles of solute = 0.14 mol KCl
- molarity= 1.8 mol KCl/ L
- liters of solution=x
Substitute these values/variables into the formula.

We are solving for x, so we must isolate the variable. First, cross multiply. Multiply the first numerator and second denominator, then the first denominator and second numerator.



Now x is being multiplied by 1.8 moles of potassium chloride per liter. The inverse operation of multiplication is division, so we divide both sides by 1.8 mol KCl/L.


The units of moles of potassium chloride cancel.


The original measurements of moles and molarity have 2 significant figures, so our answer must have the same. For the number we found, that is the thousandth place. The 7 in the ten-thousandth place tells us to round the 7 up to a 8.

There are approximately <u>0.078 liters of solution.</u>
Answer:
is the smallest unit of ordinary matter that forms a chemical element.
Explanation:
and were created after the Big Bang 13.7 billion years ago.
Independent Variable: amount of sunlight given
Dependent Variable: How tall the plants grow
Control: The plant given no sunlight
Answer:
It becomes a positive ion and its radius decreases
Explanation:
As per the Octet rule, Barium has 2 electrons in its outermost shell. When it loses the two electron it gains two positive charge i.e Ba2+. As the barium loses the two electron from its outermost shell, the outermost shell becomes vacant and thus is no more considered as a part of atomic geometry of the barium atom and since the outermost shell is considered negligible the radius of barium atom reduces automatically.