Answer:
No
Step-by-step explanation:
Say n was equal to 2
7(2) + 6 =20
13(2) = 26
In finding the minimum amount of time that Brandon can swim is to add the quotient of the distance to swim and its velocity and the quotient of the difference of 250 and the distance cover in running and its velocity. The minimum time is 43.33 seconds
The diagonal of the figure forms a right angle triangle with the diagonal of the base and the height of the figure.
Diagonal of base = √(3² + 4²)
= 5ft
Diagonal of solid² = Diagonal of base² + height²
height = √((√41)² + 5²)
height = 8.12 feet
Volume = width x length x height
Volume = 3 x 4 x 8.12
= 97.44 cubic feet
Answer:
Step-by-step explanation:
We have volume of cone as

and for a cone always r/h = constant
Given that r' = rate of change of radius = -7 inches/sec
(Negative sign because decresing)
V' =- 948 in^3/sec
Radius = 99 inches and volume = 525 inches
Height at this instant = 
Let us differentiate the volume equation with respect to t using product rule
![V=\frac{1}{3} \pi r^2 h\\V' = \frac{1}{3} \pi[2rhr'+r^2 h']\\-948 = \frac{1}{3} \pi[2(99)(-7)(\frac{0.1607}{\pi})+99^2 h']\\](https://tex.z-dn.net/?f=V%3D%5Cfrac%7B1%7D%7B3%7D%20%5Cpi%20r%5E2%20h%5C%5CV%27%20%3D%20%5Cfrac%7B1%7D%7B3%7D%20%5Cpi%5B2rhr%27%2Br%5E2%20h%27%5D%5C%5C-948%20%3D%20%5Cfrac%7B1%7D%7B3%7D%20%5Cpi%5B2%2899%29%28-7%29%28%5Cfrac%7B0.1607%7D%7B%5Cpi%7D%29%2B99%5E2%20h%27%5D%5C%5C)
![-948 = \frac{1}{3} \pi[2(99)(-7)(\frac{0.1607}{\pi})+99^2 h']\\-948 = 33(3.14)(-2.25/3.14 + 99 h')\\-9.149=-0.72+99h'\\-8.429 = 99h'\\h' = 0.08514](https://tex.z-dn.net/?f=-948%20%3D%20%5Cfrac%7B1%7D%7B3%7D%20%5Cpi%5B2%2899%29%28-7%29%28%5Cfrac%7B0.1607%7D%7B%5Cpi%7D%29%2B99%5E2%20h%27%5D%5C%5C-948%20%3D%2033%283.14%29%28-2.25%2F3.14%20%20%2B%2099%20h%27%29%5C%5C-9.149%3D-0.72%2B99h%27%5C%5C-8.429%20%3D%2099h%27%5C%5Ch%27%20%3D%200.08514)
Rate of change of height = 0.08514 in/sec
Your best bet is to make a table of the x and y values.
Then plug -2, -1, 0, 1, and 2 in for x, into the equation to get the y values. That's how you get your points.