Answer:
<em><u>The</u></em><em><u> </u></em><em><u>answer</u></em><em><u> </u></em><em><u>is</u></em><em><u>,</u></em><em><u> </u></em><em><u>q</u></em><em><u> </u></em><em><u>=</u></em><em><u> </u></em><em><u>16</u></em><em><u>.</u></em>
Step-by-step explanation:
1) Divide both sides by 3.

2) Simplify 27/3 to 9.

3) Add 7 to both sides.

4) Simplify 9 + 7 to 16.

<em><u>Therefor</u></em><em><u>,</u></em><em><u> </u></em><em><u>the</u></em><em><u> </u></em><em><u>answer</u></em><em><u> </u></em><em><u>is</u></em><em><u> </u></em><em><u>q</u></em><em><u> </u></em><em><u>=</u></em><em><u> </u></em><em><u>16</u></em><em><u>.</u></em>
The answer is the graph b.
Answer:
51
Step-by-step explanation:
Note that f(x) as given is <em>not</em> invertible. By definition of inverse function,


which is a cubic polynomial in
with three distinct roots, so we could have three possible inverses, each valid over a subset of the domain of f(x).
Choose one of these inverses by restricting the domain of f(x) accordingly. Since a polynomial is monotonic between its extrema, we can determine where f(x) has its critical/turning points, then split the real line at these points.
f'(x) = 3x² - 1 = 0 ⇒ x = ±1/√3
So, we have three subsets over which f(x) can be considered invertible.
• (-∞, -1/√3)
• (-1/√3, 1/√3)
• (1/√3, ∞)
By the inverse function theorem,

where f(a) = b.
Solve f(x) = 2 for x :
x³ - x + 2 = 2
x³ - x = 0
x (x² - 1) = 0
x (x - 1) (x + 1) = 0
x = 0 or x = 1 or x = -1
Then
can be one of
• 1/f'(-1) = 1/2, if we restrict to (-∞, -1/√3);
• 1/f'(0) = -1, if we restrict to (-1/√3, 1/√3); or
• 1/f'(1) = 1/2, if we restrict to (1/√3, ∞)
Answer:
C. 2^x+1
Step-by-step explanation:
Graph