If u separate these into 2 triangles then they will become 90 degree triangles so angle a=angle c.
Answer:
it's C (0,2)
Step-by-step explanation:
Answer:4+1=5
Step-by-step explanation:
The reason the answer is 4+1 is because you have to subtract x from 4x causing it to be just 4 and then y I have to subtract 2 from 3 leaving one then you would have to add 4+1 which equals 5
The
<u>correct diagram</u> is attached.
Explanation:
Using technology (such as Geogebra), first construct a line segment. Name the endpoints C and D.
Construct the perpendicular bisector of this segment. Label the intersection point with CD as B, and create another point A above it.
Measure the distance from C to B and from B to D. They will be the same.
Measure the distance from A to B. If it is not the same as that from C to B, slide A along line AB until the distance is the same.
Using a compass and straightedge:
First construct segment CD, being sure to label the endpoints.
Set your compass a little more than halfway from C to D. With your compass set on C, draw an arc above segment CD.
With your compass set on D (the same distance as before) draw an arc above segment CD to intersect your first arc. Mark this intersection point as E.
Connect E to CD using a straightedge; mark the intersection point as B.
Set your compass the distance from C to B. With your compass on B, mark an arc on EB. Mark this intersection point as A.
AB will be the same distance as CB and BD.
Answer:
Funciones trigonométricas de μ
sen (μ) = b/ √(a^2+ b^2)
cos (μ) = a/ √(a^2+ b^2)
tan (μ) = b/ a
cot (μ) = a/ b
sec (μ) = √(a^2+ b^2) / a
csc (μ) = √(a^2+ b^2) /b
Step-by-step explanation:
Ya que no proportionaste el valor de cot μ podemos suponer un valor = a/b para que tengas una respuesta general y reemplaces el valor de a y b de acuerdo con tu caso.
cot (μ) = a/b
_______________________________
Funciones trigonométricas
sen (μ) = cateto opuesto/ hipotenusa
cos (μ) = cateto adyacente/ hipotenusa
tan (μ) = cateto opuesto/ cateto adyacente
cot (μ) = cateto adyacente/ cateto opuesto
sec (μ) = hipotenusa / cateto adyacente
csc (μ) = hipotenusa /cateto opuesto
cot (μ) = cateto adyacente/ cateto opuesto = cot (μ) = a/ b
Por lo tanto:
Cateto adyacente = a
Cateto opuesto = b
Hipotenusa
H^2 = Cateto adyacente^2 + Cateto opuesto^2
H= √(a^2+ b^2)
Reemplaznado los valores de los catetos y la hipotenusa se obteienen los valores de las funciones trigonométricas de μ.