1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vlada-n [284]
3 years ago
14

Write the equation for a line that is perpendicular to the line 8x-4y=12 and passes through the orgin

Mathematics
1 answer:
Delicious77 [7]3 years ago
5 0

Answer:

y = - \frac{1}{2} x

Step-by-step explanation:

The equation of a line in slope- intercept form is

y = mx + c ( m is the slope and c the y- intercept )

Rearrange 8x - 4y = 12 into this form

Subtract 4x from both sides

- 4y = - 8x + 12 ( divide all terms by - 4 )

y = 2x - 3 ← in slope- intercept form

with slope m = 2

Given a line with slope m then the slope of a line perpendicular to it is

m_{perpendicular} = - \frac{1}{m} = - \frac{1}{2}

Since the line passes through the origin then c = 0

y = - \frac{1}{2} x ← equation of perpendicular line

You might be interested in
2 1/3 x -1 1/2=? Awarding Brainlyest lol
Nastasia [14]

Answer:

-3.5 or 3 1/2

Step-by-step explanation:

5 0
3 years ago
I 6 = solve plz........
denis-greek [22]
I think it might be i6 = 6i I’m sorry if it’s wrong.
6 0
4 years ago
Add. Simplify the answer and write it as a mixed number. 1/2+2/3+1/6
lyudmila [28]

Answer:

1 1/3

Step-by-step explanation:

Find the common denominator of all three which is 6.

Then multiply each to make the common denominator 6

1/2*3 = 3/6

2/3*2 = 4/6

1/6*1 = 1/6

Then add all of them together

3/6+4/6+1/6 = 1 2/6

Simplified equals 1 1/3

5 0
3 years ago
Simplify the following expression by combining like terms.
PilotLPTM [1.2K]

Answer:

13x+13

Step-by-step explanation:

4 0
3 years ago
Read 2 more answers
What is the derivative of x times squaareo rot of x+ 6?
Dafna1 [17]
Hey there, hope I can help!

\mathrm{Apply\:the\:Product\:Rule}: \left(f\cdot g\right)^'=f^'\cdot g+f\cdot g^'
f=x,\:g=\sqrt{x+6} \ \textgreater \  \frac{d}{dx}\left(x\right)\sqrt{x+6}+\frac{d}{dx}\left(\sqrt{x+6}\right)x \ \textgreater \  \frac{d}{dx}\left(x\right) \ \textgreater \  1

\frac{d}{dx}\left(\sqrt{x+6}\right) \ \textgreater \  \mathrm{Apply\:the\:chain\:rule}: \frac{df\left(u\right)}{dx}=\frac{df}{du}\cdot \frac{du}{dx} \ \textgreater \  =\sqrt{u},\:\:u=x+6
\frac{d}{du}\left(\sqrt{u}\right)\frac{d}{dx}\left(x+6\right)

\frac{d}{du}\left(\sqrt{u}\right) \ \textgreater \  \mathrm{Apply\:radical\:rule}: \sqrt{a}=a^{\frac{1}{2}} \ \textgreater \  \frac{d}{du}\left(u^{\frac{1}{2}}\right)
\mathrm{Apply\:the\:Power\:Rule}: \frac{d}{dx}\left(x^a\right)=a\cdot x^{a-1} \ \textgreater \  \frac{1}{2}u^{\frac{1}{2}-1} \ \textgreater \  Simplify \ \textgreater \  \frac{1}{2\sqrt{u}}

\frac{d}{dx}\left(x+6\right) \ \textgreater \  \mathrm{Apply\:the\:Sum/Difference\:Rule}: \left(f\pm g\right)^'=f^'\pm g^'
\frac{d}{dx}\left(x\right)+\frac{d}{dx}\left(6\right)

\frac{d}{dx}\left(x\right) \ \textgreater \  1
\frac{d}{dx}\left(6\right) \ \textgreater \  0

\frac{1}{2\sqrt{u}}\cdot \:1 \ \textgreater \  \mathrm{Substitute\:back}\:u=x+6 \ \textgreater \  \frac{1}{2\sqrt{x+6}}\cdot \:1 \ \textgreater \  Simplify \ \textgreater \  \frac{1}{2\sqrt{x+6}}

1\cdot \sqrt{x+6}+\frac{1}{2\sqrt{x+6}}x \ \textgreater \  Simplify

1\cdot \sqrt{x+6} \ \textgreater \  \sqrt{x+6}
\frac{1}{2\sqrt{x+6}}x \ \textgreater \  \frac{x}{2\sqrt{x+6}}
\sqrt{x+6}+\frac{x}{2\sqrt{x+6}}

\mathrm{Convert\:element\:to\:fraction}: \sqrt{x+6}=\frac{\sqrt{x+6}}{1} \ \textgreater \  \frac{x}{2\sqrt{x+6}}+\frac{\sqrt{x+6}}{1}

Find the LCD
2\sqrt{x+6} \ \textgreater \  \mathrm{Adjust\:Fractions\:based\:on\:the\:LCD} \ \textgreater \  \frac{x}{2\sqrt{x+6}}+\frac{\sqrt{x+6}\cdot \:2\sqrt{x+6}}{2\sqrt{x+6}}

Since\:the\:denominators\:are\:equal,\:combine\:the\:fractions
\frac{a}{c}\pm \frac{b}{c}=\frac{a\pm \:b}{c} \ \textgreater \  \frac{x+2\sqrt{x+6}\sqrt{x+6}}{2\sqrt{x+6}}

x+2\sqrt{x+6}\sqrt{x+6} \ \textgreater \  \mathrm{Apply\:exponent\:rule}: \:a^b\cdot \:a^c=a^{b+c}
\sqrt{x+6}\sqrt{x+6}=\:\left(x+6\right)^{\frac{1}{2}+\frac{1}{2}}=\:\left(x+6\right)^1=\:x+6 \ \textgreater \  x+2\left(x+6\right)
\frac{x+2\left(x+6\right)}{2\sqrt{x+6}}

x+2\left(x+6\right) \ \textgreater \  2\left(x+6\right) \ \textgreater \  2\cdot \:x+2\cdot \:6 \ \textgreater \  2x+12 \ \textgreater \  x+2x+12
3x+12

Therefore the derivative of the given equation is
\frac{3x+12}{2\sqrt{x+6}}

Hope this helps!
8 0
3 years ago
Other questions:
  • 5. Cameron Benson is a dental assistant. He earns $17.25 per hour and time and a half for
    7·2 answers
  • What value is added to both sides of the equation x2 − 2x = 10 in order to solve by completing the square?
    15·1 answer
  • if 24000 bricks of the same shape and size are required to build a wall of dimensions 15m*6m*20cm ,find the volume of each brick
    14·1 answer
  • Mark 4/9 and -7/9 on a number line.​
    6·2 answers
  • Please i need this done
    12·1 answer
  • Write an equation of the line in slope-intercept form (-3,3) (0,-1)
    13·1 answer
  • Rotate (3,5) 180 degrees
    10·1 answer
  • Y = -x^2 + 4x<br><br> quadratic formula
    7·1 answer
  • Write equation of the line containing the points (1,2) and (3, 4)
    9·2 answers
  • What does Medicare tax support?
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!