It has not been indicated whether the figure in the questions is a triangle or a quadrilateral. Irrespective of the shape, this can be solved. The two possible shapes and angles have been indicated in the attached image.
Now, from the information given we can infer that there is a line BD that cuts angle ABC in two parts: angle ABD and angle DBC
⇒ Angle ABC = Angle ABD + Angle DBC
Also, we know that angle ABC is 1 degree less than 3 times the angle ABD, and that angle DBC is 47 degree
Let angle ABD be x
⇒ Angle ABC = 3x-1
Also, Angle ABC = Angle ABD + Angle DBC
Substituting the values in the above equations
⇒ 3x-1 = x+47
⇒ 2x = 48
⇒ x = 24
So angle ABD = 24 degree, and angle ABC = 3(24)-1 = 71-1 = 71 degree
Hello from MrBillDoesMath!
Answer:
33769/181
Discussion:
Each term contains "x" so factoring it out gives
x( 1/4 + 1/14 + 1/17) = 71 (*)
Use common factor (17*14*4 = 952) as the denominator to combine terms:
1/4 = (17*14)/ 952 = 238/952
1/14 = (17*4)/952 = 68/952
1/17 = (14*4)/952 = 56/952
so 1/4 + 1/14 + 1/17 = (238 + 68 + 56)/ 952 = 362/952 = 181/476
Substituting in (*) gives
x ( 181/476) = 71 => multiply both sides by 476/181
x = (71 * 476)/181 => 71* 476 =33769
x = 33769/181
Thank you,
MrB
Answer:4566878888
Step-by-step explanation: