Answer:
a) Natural gas burns more efficiently and cleanly than other sources of carbon-based fossil fuels, thus contributing to a reduction in atmospheric carbon dioxide.
Explanation:
Although fossil fuels such as coal and oil have carbon content, natural gas also has it in smaller proportions, which is why it is a good idea to use it as a transitional fuel. Although natural gas does not have the same specific heat as gasoline, its production is simpler since it does not require the expensive refining processes such as petroleum derivatives, which is why its production is more efficient.
Another facility is the amount of natural gas that is obtained from oil wells, this can be extracted and stored efficiently to prevent its spread into the atmosphere.
Answer:
0.15kg/m³
Explanation:
Density = mass/ volume
Given that
Mass = 150kg
Note that volume = length x breadth x height
Volume = 20 x 10 x 5
Volume = 1000m³
Density = mass ➗ volume
Density = 150kg ➗ 1000m³
Density = 0.15kg/m³
I hope this was helpful, Please mark as brainliest
Answer:
0.167m/s
Explanation:
According to law of conservation of momentum which States that the sum of momentum of bodies before collision is equal to the sum of the bodies after collision. The bodies move with a common velocity after collision.
Given momentum = Maas × velocity.
Momentum of glider A = 1kg×1m/s
Momentum of glider = 1kgm/s
Momentum of glider B = 5kg × 0m/s
The initial velocity of glider B is zero since it is at rest.
Momentum of glider B = 0kgm/s
Momentum of the bodies after collision = (mA+mB)v where;
mA and mB are the masses of the gliders
v is their common velocity after collision.
Momentum = (1+5)v
Momentum after collision = 6v
According to the law of conservation of momentum;
1kgm/s + 0kgm/s = 6v
1 =6v
V =1/6m/s
Their speed after collision will be 0.167m/s
Positive charge=proton
Negative charge=electron
No charge/neutral=neutron
Answer:
Explanation:
Potential energy on the surface of the earth
= - GMm/ R
Potential at height h
= - GMm/ (R+h)
Potential difference
= GMm/ R - GMm/ (R+h)
= GMm ( 1/R - 1/ R+h )
= GMmh / R (R +h)
This will be the energy needed to launch an object from the surface of Earth to a height h above the surface.
Extra energy is needed to get the same object into orbit at height h
= Kinetic energy of the orbiting object at height h
= 1/2 x potential energy at height h
= 1/2 x GMm / ( R + h)