Explanation:
spectral lines or signatures of elements depend on temperature, the temperature of the sun is about 5800 K.
at this temperature most calcium atoms are excited to higher energy states than hydrogen atoms and this means that calcium atoms are gonna have more signatures than the atoms of hydrogen.
the statement that the sun shows weak hyrogen lines and strong calcium line is wrong because at the sun's temperature most of the hydrogen atoms are in lower energy states while calcium atoms are in higher energy states hence calcium has more or ''strong'' lines than hydrogen.
- La velocidad de las ondas sonoras es aproximadamente 1469,694 metros por segundo.
- La longitud de onda de las ondas sonoras es 1,470 metros.
1) Inicialmente, debemos determinar la velocidad de las ondas sonoras a través del agua (
), en metros por segundo:
(1)
Donde:
- Módulo de compresibilidad, en newtons por metro cuadrado.
- Densidad del agua, en kilogramos por metro cúbico.
Si sabemos que
y
, entonces la velocidad de las ondas sonoras es:


La velocidad de las ondas sonoras es aproximadamente 1469,694 metros por segundo.
2) Luego, determinamos la longitud de onda (
), en metros, mediante la siguiente fórmula:
(2)
Donde
es la frecuencia de las ondas sonoras, en hertz.
Si sabemos que
y
, entonces la longitud de onda de las ondas sonoras es:


La longitud de onda de las ondas sonoras es 1,470 metros.
Para aprender más sobre las ondas sonoras, invitamos a ver esta pregunta verificada: brainly.com/question/1070238
-Reduce the sample size so the experiment can be done faster.-Increase the sample size from 6 cups to 12 cups of sand and water.-Use more legible handwriting when recording data.-Use more precise digital thermometers.<span>-Use more precise scales that measure to the hundredth of a gram.</span>
Answer:
Explanation:
We know the frequency and the velocity, both of which have good units. All we have to do is rearrange the equation and solve for
λ
:
λ
=
v
f
Let's plug in our given values and see what we get!
λ
=
340
m
s
440
s
−
1
λ
=
0.773
m
Any object that is launched as a projectile will lose speed and, as a result, altitude, as it travels through the air. The rate at which the object loses speed and altitude depends on the amount of force that way applied to it when it was launched. It is also dependent on the size and shape of the item. This is why something like, say, a football is much faster to fall to the ground than a bullet.