Answer:
Wave speed is related to both wavelength and wave frequency. Wavelength is the distance between two corresponding points on adjacent waves. Wave frequency is the number of waves that pass a fixed point in a given amount of time. This equation shows how the three factors are related:
Speed = Wavelength x Wave Frequency
Explanation:
Answer:
34 m/s
Explanation:
Potential energy at top = kinetic energy at bottom + work done by friction
PE = KE + W
mgh = ½ mv² + Fd
mg (d sin θ) = ½ mv² + Fd
Solving for v:
½ mv² = mg (d sin θ) − Fd
mv² = 2mg (d sin θ) − 2Fd
v² = 2g (d sin θ) − 2Fd/m
v = √(2g (d sin θ) − 2Fd/m)
Given g = 9.8 m/s², d = 150 m, θ = 28°, F = 50 N, and m = 65 kg:
v = √(2 (9.8 m/s²) (150 m sin 28°) − 2 (50 N) (150 m) / (65 kg))
v = 33.9 m/s
Rounded to two significant figures, her velocity at the bottom of the hill is 34 m/s.
Complete Question:
Check the file attached to get the complete question
Answer:
In the film Ice word Revenge, vehicle 2 did not fall of the cliff because,
but in Claire's test, vehicle 2 off the cliff because 
Explanation:
In Claire's test, the weight of vehicle 1 is either equal to or greater than the weight of vehicle 2, so it was sufficient to push it down the cliff. In the film Ice word revenge, the weight of vehicle 1 is less than the weight of vehicle 2, it is not sufficient to make it fall off the cliff ( Note: Looking exactly the same in the movie, as Claire claimed, does not mean they have the same mass). Therefore if Claire wants a collision that will not make the vehicle 2 fall off the cliff, he should collide it with a vehicle of lesser mass/weight.
Answer:
Explanation:
Given
length of window 
time Frame for which rock can be seen is 
Suppose h is height above which rock is dropped
Time taken to cover 
so using equation of motion

where y=displacement
u=initial velocity
a=acceleration
t=time
time taken to travel h is

Subtract 1 and 2 we get


and from equation 
so 

and 
so 



substitute the value of
in equation 2


Well the similarity is that even though they are in a different state of matter they still come from the same substance: h2o