Answer:
Expected return= 0.165
Standard deviation = 0.07762
Explanation:
Given the following :
State - - - - - - - probability - - return
Boom - - - - - - - 0.4 - - - - - - - - 25%
Good - - - - - - - - 0.3 - - - - - - - 15%
Level - - - - - - - - 0.1 - - - - - - - - 10%
Slump - - - - - - - -0.2 - - - - - - - -5%
Expected return on investment :
Probability × rate of return
(0.4 × 25%) + (0.3 × 15%) + (0.1 × 10%) + (0.2 × 5%)
(0.4 × 0.25) + (0.3 × 0.15) + (0.1 × 0.1) + (0.2 × 0.05) = 0.165
= 16.5%
Standard deviation = √variance
Variance = probability × (return - expected return)^2
Variance = 0.4(25-16.5)^2 + 0.3(15-16.5)^2 + 0.1(10-16.5)^2 + 0.2(5-16.5)^2
Variance = 0.4(8.5)^2 + 0.3(-1.5)^2 + 0.1(-6.5)^2 + 0.2(11.5)^2
Variance = 0.4(72.25) + 0.3(2.25) + 0.1(42.25) + 0.2(132.25)
Variance = 60.25%
Standard deviation = √60.25
Standard deviation = 7.7620873%
= 0.0776208
= 0.07762 ( 5 decimal places )