Answer:
Cardiac output:
Step-by-step explanation:
Given : The dye dilution method is used to measure cardiac output with 3 mg of dye.
To Find : Find the cardiac output.
Solution:
Formula of cardiac output:
---1
A = 3 mg

Do, integration by parts
![[\int{20te^{-0.6t}} \, dt]^{10}_0=[20t\int{e^{-0.6t} \,dt}-\int[\frac{d[20t]}{dt}\int {e^{-0.6t} \, dt]dt]^{10}_0](https://tex.z-dn.net/?f=%5B%5Cint%7B20te%5E%7B-0.6t%7D%7D%20%5C%2C%20dt%5D%5E%7B10%7D_0%3D%5B20t%5Cint%7Be%5E%7B-0.6t%7D%20%5C%2Cdt%7D-%5Cint%5B%5Cfrac%7Bd%5B20t%5D%7D%7Bdt%7D%5Cint%20%7Be%5E%7B-0.6t%7D%20%5C%2C%20dt%5Ddt%5D%5E%7B10%7D_0)
![[\int{20te^{-0.6t}} \, dt]^{10}_0=[\frac{-20te^{-0.6t}}{0.6}+\frac{20}{0.6}\int {e^{-0.6t} \,dt]^{10}_0](https://tex.z-dn.net/?f=%5B%5Cint%7B20te%5E%7B-0.6t%7D%7D%20%5C%2C%20dt%5D%5E%7B10%7D_0%3D%5B%5Cfrac%7B-20te%5E%7B-0.6t%7D%7D%7B0.6%7D%2B%5Cfrac%7B20%7D%7B0.6%7D%5Cint%20%7Be%5E%7B-0.6t%7D%20%5C%2Cdt%5D%5E%7B10%7D_0)
![[\int{20te^{-0.6t}} \, dt]^{10}_0=[\frac{-20te^{-0.6t}}{0.6}+\frac{20e^{-0.6t}}{(0.6)^2}]^{10}_{0}](https://tex.z-dn.net/?f=%5B%5Cint%7B20te%5E%7B-0.6t%7D%7D%20%5C%2C%20dt%5D%5E%7B10%7D_0%3D%5B%5Cfrac%7B-20te%5E%7B-0.6t%7D%7D%7B0.6%7D%2B%5Cfrac%7B20e%5E%7B-0.6t%7D%7D%7B%280.6%29%5E2%7D%5D%5E%7B10%7D_%7B0%7D)
![[\int{20te^{-0.6t}} \, dt]^{10}_0=[\frac{-200e^{-6}}{0.6}+\frac{20e^{-6}}{(0.6)^2}]+\frac{20}{(0.60^2}](https://tex.z-dn.net/?f=%5B%5Cint%7B20te%5E%7B-0.6t%7D%7D%20%5C%2C%20dt%5D%5E%7B10%7D_0%3D%5B%5Cfrac%7B-200e%5E%7B-6%7D%7D%7B0.6%7D%2B%5Cfrac%7B20e%5E%7B-6%7D%7D%7B%280.6%29%5E2%7D%5D%2B%5Cfrac%7B20%7D%7B%280.60%5E2%7D)
![[\int{20te^{-0.6t}} \, dt]^{10}_0=\frac{20(1-e^{-6}}{(0.6)^2}-\frac{200e^{-6}}{0.6}](https://tex.z-dn.net/?f=%5B%5Cint%7B20te%5E%7B-0.6t%7D%7D%20%5C%2C%20dt%5D%5E%7B10%7D_0%3D%5Cfrac%7B20%281-e%5E%7B-6%7D%7D%7B%280.6%29%5E2%7D-%5Cfrac%7B200e%5E%7B-6%7D%7D%7B0.6%7D)
![[\int{20te^{-0.6t}} \, dt]^{10}_0\sim {54.49}](https://tex.z-dn.net/?f=%5B%5Cint%7B20te%5E%7B-0.6t%7D%7D%20%5C%2C%20dt%5D%5E%7B10%7D_0%5Csim%20%7B54.49%7D)
Substitute the value in 1
Cardiac output:
Cardiac output:
Hence Cardiac output:
Im actually pretty sure its C because 4 to the power of 2 is 16 and then add those too up 16+25=41
Answer:
6
Step-by-step explanation:
Let's solve the equation 2k^2 = 9 + 3k
First, subtract each side by (9+3k) to get 0 on the right side of the equation
2k^2 = 9 + 3k
2k^2 - (9+3k) = 9+3k - (9+3k)
2k^2 - 9 - 3k = 9 + 3k - 9 - 3k
2k^2 - 3k - 9 = 0
As you see, we got a quadratic equation of general form ax^2 + bx + c, in which a = 2, b= -3, and c = -9.
Δ = b^2 - 4ac
Δ = (-3)^2 - 4 (2)(-9)
Δ<u /> = 9 + 72
Δ<u /> = 81
Δ<u />>0 so the equation got 2 real solutions:
k = (-b + √Δ)/2a = (-(-3) + √<u />81) / 2*2 = (3+9)/4 = 12/4 = 3
AND
k = (-b -√Δ)/2a = (-(-3) - √<u />81)/2*2 = (3-9)/4 = -6/4 = -3/2
So the solutions to 2k^2 = 9+3k are k=3 and k=-3/2
A rational number is either an integer number, or a decimal number that got a definitive number of digits after the decimal point.
3 is an integer number, so it's rational.
-3/2 = -1.5, and -1.5 got a definitive number of digit after the decimal point, so it's rational.
So 2k^2 = 9 + 3k have two rational solutions (Option B).
Hope this Helps! :)