Many people would say "one point six seven" or "one dot six seven".
But technically, it's "<em>one and sixty-seven hundredths</em>".
Given that the garden is rectangular and a line of roses form the diagonal 18.4 m long, we required to calculate the length of the perpendicular side.
Here we shall use the Pythagorean theorem.
c²=a²+b²
where c is the hypotenuse, a and b are the legs.
from the information given:
c=18.4 m
a=13 m
plugging this into our expression we get:
18.4²=13²+b²
next we solve for the value of b
b²=18.4²-13²
b²=338.56-169
b²=169.56
b=√169.56
b=13.0215
hence the length to the nearest tenth of a meter will be approximately 13.0 m
The firts thig we are going to do is create tow triangles using the angles of elevation of Paul and Jose. Since the problem is not giving us their height we'll assume that the horizontal line of sight of both of them coincide with the base of the tree.
We know that Paul is 19m from the base of the tree and its elevation angle to the top of the tree is 59°. We also know that the elevation angle of Jose and the top of the tree is 43°, but we don't know the distance between Paul of Jose, so lets label that distance as

.
Now we can build a right triangle between Paul and the tree and another one between Jose and the tree as shown in the figure. Lets use cosine to find h in Paul's trianlge:



Now we can use the law of sines to find the distance

between Paul and Jose:



Now that we know the distance between Paul and Jose, the only thing left is add that distance to the distance from Paul and the base of the tree:

We can conclude that Jose is 33.9m from the base of the tree.
Once you plug in -18 as x you divide it with 6 and the answer of that is -3 then you add 17 and -3 and your output will be 14!