<span>88.80625 is the answer because I used a calculator.</span>
Hum, this problem was difficult. You use the next expression to solve this problem. \[\cos (A - B) = \cos A \cos B + \sin A \sin B \] \[\cos (A + B) = \cos A \cos B - \sin A \sin B\] \[\cos (A - B ) - \cos (A +B ) =2 \sin A \sin B\] So \[\sin A \sin B = 0.5 \left( \cos(A - B) - \cos(A + B) \right)\] A = 1.8 x, B = 0.5 x \[\sin (1.8x) \sin (0.5x) = 0.5\left( \cos(1.8-0.5)x - \cos(1.8+0.5)x \right)\]\[= 0.5 \left( \cos(1.3x) - \cos (2.3x) \right)\] It's finish !!
Answer:
![52 \sqrt[5]{7}](https://tex.z-dn.net/?f=52%20%5Csqrt%5B5%5D%7B7%7D%20)
Step-by-step explanation:

![= 52 \sqrt[5]{7}](https://tex.z-dn.net/?f=%20%3D%2052%20%5Csqrt%5B5%5D%7B7%7D%20)
Answer:

Step-by-step explanation:
1) Rewrite x² - 9 in the form a² - b² where, a = x and b = 3.

2) use difference of squares: a² - b² = ( a + b ) (a - b).

3) Factor out the common term x.

4) Cancle out x - 3 .

5) Simplify.

<em><u>Therefor</u></em><em><u>,</u></em><em><u> </u></em><em><u>the</u></em><em><u> </u></em><em><u>answer</u></em><em><u> </u></em><em><u>is</u></em><em><u> </u></em><em><u>1</u></em><em><u> </u></em><em><u>+</u></em><em><u> </u></em><em><u>3</u></em><em><u>/</u></em><em><u>x</u></em><em><u>.</u></em>
Answer:
its easy
sum of interior angle is 180degrees sum of exterior angle is 360degrees