<em>So</em><em> </em><em>the</em><em> </em><em>right</em><em> </em><em>answer</em><em> </em><em>is</em><em> </em><em>1</em><em>.</em>
<em>Look</em><em> </em><em>at</em><em> </em><em>the</em><em> </em><em>attached</em><em> </em><em>picture</em>
<em>H</em><em>ope</em><em> </em><em>it</em><em> </em><em>will</em><em> </em><em>help</em><em> </em><em>you</em><em>.</em><em>.</em><em>.</em>
<em>G</em><em>ood</em><em> </em><em>luck</em><em> </em><em>on</em><em> </em><em>your</em><em> </em><em>assignment</em>
<em>~</em><em>p</em><em>r</em><em>a</em><em>g</em><em>y</em><em>a</em>
Y = 3x - 4
y = 3(-1) - 4
y = -3 - 4 = -7
Graph pair is (-1, -7)
y = 3(0) - 4
y = 0 - 4 = -4
Graph pair is (0, -4)
y = 3(2) - 4
y = 6 - 4 = 2
Graph pair is (2, 2)
y = 3(4) - 4
y = 12 - 4 = 8
Graph pair is (4, 8)
<h3>Answer: A. 5/12, 25/12</h3>
============================
Work Shown:
12*sin(2pi/5*x)+10 = 16
12*sin(2pi/5*x) = 16-10
12*sin(2pi/5*x) = 6
sin(2pi/5*x) = 6/12
sin(2pi/5*x) = 0.5
2pi/5*x = arcsin(0.5)
2pi/5*x = pi/6+2pi*n or 2pi/5*x = 5pi/6+2pi*n
2/5*x = 1/6+2*n or 2/5*x = 5/6+2*n
x = (5/2)*(1/6+2*n) or x = (5/2)*(5/6+2*n)
x = 5/12+5n or x = 25/12+5n
these equations form the set of all solutions. The n is any integer.
--------
The two smallest positive solutions occur when n = 0, so,
x = 5/12+5n or x = 25/12+5n
x = 5/12+5*0 or x = 25/12+5*0
x = 5/12 or x = 25/12
--------
Plugging either x value into the expression 12*sin(2pi/5*x)+10 should yield 16, which would confirm the two answers.
Answer:
<h2>
∠PZQ = 63°</h2>
Step-by-step explanation:
If point P is the interior of ∠OZQ , then the mathematical operation is true;
∠OZP + ∠PZQ = ∠OZQ
Given parameters
∠OZQ = 125°
∠OZP = 62°
Required
∠PZQ
TO get ∠PZQ, we will substitute the given parameters into the expression above as shown
∠OZP + ∠PZQ = ∠OZQ
62° + ∠PZQ = 125°
subtract 62° from both sides
62° + ∠PZQ - 62° = 125° - 62°
∠PZQ = 125° - 62°
∠PZQ = 63°
<em>Hence the value of ∠PZQ is 63°</em>
Answer:
6.871 decimeters
Step-by-step explanation:
687.1 square centimeters = 6.871 square decimeters
1 dm² = 100 cm²