Answer:
1. ![A^-^1=\left[\begin{array}{cc}\frac{3}{10}&\frac{1}{5}\\\frac{1}{10}&\frac{2}{5} \end{array}\right]](https://tex.z-dn.net/?f=A%5E-%5E1%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D%5Cfrac%7B3%7D%7B10%7D%26%5Cfrac%7B1%7D%7B5%7D%5C%5C%5Cfrac%7B1%7D%7B10%7D%26%5Cfrac%7B2%7D%7B5%7D%20%5Cend%7Barray%7D%5Cright%5D)
2. 
Step-by-step explanation:
We have the matrix:
![A=\left[\begin{array}{cc}4&-2\\-1&3\end{array}\right]](https://tex.z-dn.net/?f=A%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D4%26-2%5C%5C-1%263%5Cend%7Barray%7D%5Cright%5D)
It's a 2×2 matrix (This means that the matrix has two rows and two columns).
1. We have to find the inverse of A.
For a 2×2 matrix the inverse is:
If you have ![A=\left[\begin{array}{cc}a&b\\c&d\end{array}\right]](https://tex.z-dn.net/?f=A%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7Da%26b%5C%5Cc%26d%5Cend%7Barray%7D%5Cright%5D)
![A^-^1=\frac{1}{|A|} \left[\begin{array}{cc}d&-b\\-c&a\end{array}\right]](https://tex.z-dn.net/?f=A%5E-%5E1%3D%5Cfrac%7B1%7D%7B%7CA%7C%7D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7Dd%26-b%5C%5C-c%26a%5Cend%7Barray%7D%5Cright%5D)
And,
is the determinant of the matrix, the determinant has to be different from zero.
If
then the matrix doesn't have inverse.

Then,
![A=\left[\begin{array}{cc}4&-2\\-1&3\end{array}\right]](https://tex.z-dn.net/?f=A%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D4%26-2%5C%5C-1%263%5Cend%7Barray%7D%5Cright%5D)

First we are going to calculate the determinant:

The determinant is <u><em>different from zero</em></u>, then the matrix <em>has</em> inverse.
Then the inverse of A is:
![A^-^1=\frac{1}{|A|} \left[\begin{array}{cc}d&-b\\-c&a\end{array}\right]](https://tex.z-dn.net/?f=A%5E-%5E1%3D%5Cfrac%7B1%7D%7B%7CA%7C%7D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7Dd%26-b%5C%5C-c%26a%5Cend%7Barray%7D%5Cright%5D)
![A^-^1=\frac{1}{10} \left[\begin{array}{cc}3&-(-2)\\-(-1)&4\end{array}\right]\\\\\\A^-^1=\frac{1}{10} \left[\begin{array}{cc}3&2\\1&4\end{array}\right]\\\\\\A^-^1=\left[\begin{array}{cc}\frac{3}{10}&\frac{2}{10}\\\frac{1}{10}&\frac{4}{10} \end{array}\right]\\\\\\A^-^1=\left[\begin{array}{cc}\frac{3}{10}&\frac{1}{5}\\\frac{1}{10}&\frac{2}{5} \end{array}\right]](https://tex.z-dn.net/?f=A%5E-%5E1%3D%5Cfrac%7B1%7D%7B10%7D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D3%26-%28-2%29%5C%5C-%28-1%29%264%5Cend%7Barray%7D%5Cright%5D%5C%5C%5C%5C%5C%5CA%5E-%5E1%3D%5Cfrac%7B1%7D%7B10%7D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D3%262%5C%5C1%264%5Cend%7Barray%7D%5Cright%5D%5C%5C%5C%5C%5C%5CA%5E-%5E1%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D%5Cfrac%7B3%7D%7B10%7D%26%5Cfrac%7B2%7D%7B10%7D%5C%5C%5Cfrac%7B1%7D%7B10%7D%26%5Cfrac%7B4%7D%7B10%7D%20%5Cend%7Barray%7D%5Cright%5D%5C%5C%5C%5C%5C%5CA%5E-%5E1%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D%5Cfrac%7B3%7D%7B10%7D%26%5Cfrac%7B1%7D%7B5%7D%5C%5C%5Cfrac%7B1%7D%7B10%7D%26%5Cfrac%7B2%7D%7B5%7D%20%5Cend%7Barray%7D%5Cright%5D)
2. We have the matrix,
![B=\left[\begin{array}{cc}6&3\\4&2\end{array}\right]](https://tex.z-dn.net/?f=B%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D6%263%5C%5C4%262%5Cend%7Barray%7D%5Cright%5D)

We have to calculate the determinant:

We said that a matrix can have an inverse only if its determinant is nonzero.
In this case
then, the matrix B doesn't have inverse.