Answer:
Warranty of 66 months.
Step-by-step explanation:
Problems of normally distributed samples are solved using the z-score formula.
In a set with mean and standard deviation , the zscore of a measure X is given by:
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
In this problem, we have that:
If the company wants no more than 2% of the components to wear out before they reach the warranty date, what number of months should be used for the warranty?
Only the lowest 2% will be replaced, so the warranty is the value of X when Z has a pvalue of 0.02. So it is X when Z = -2.055.
Warranty of 66 months.