1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
horrorfan [7]
3 years ago
10

PLEASE HELP ASAP!!! CORRECT ANSWERS ONLY PLEASE!!

Mathematics
1 answer:
Nadya [2.5K]3 years ago
6 0

Answer: B

<u>Step-by-step explanation:</u>

  x³ - 3x²  + 16x - 48 = 0

→ x²(x - 3)   + 16(x - 3) = 0

→ (x² + 16) (x - 3) = 0

→ (x² - (-16)) (x - 3) = 0

→ (x - 4i)(x + 4i)(x - 3) = 0

→ x - 4i = 0    x + 4i = 0   x - 3 = 0

→  x = 4i          x = -4i        x = 3

2 imaginary roots         and 1 real root

You might be interested in
Hey hey, could someone please help with this (triangle similarity)? Thanks!
Akimi4 [234]

Answer:

use mathaway it helps all you have to do is take a picture it it will help u with the steps

4 0
3 years ago
What is <br><br> 6 7/8 c = __ fl oz
masya89 [10]
The answer to this problem is
55 fl oz
6 0
3 years ago
Solve for x:<br>log x + log 8 = 2<br>​
likoan [24]

Answer: The answer is 252

Step-by-step explanation:

:)))

8 0
2 years ago
Read 2 more answers
Please help ! I don’t get it!
Amiraneli [1.4K]

Answer:

PR = 16

SR = 12

Step-by-step explanation:

6/8 = (x-3)/(x+1)

8x-24 = 6x+6

simplify

2x = 30

x = 15

PR = 15 + 1 = 16

SR = 15 - 3 = 12

8 0
3 years ago
<img src="https://tex.z-dn.net/?f=%5Clim_%7Bx%5Cto%20%5C%200%7D%20%5Cfrac%7B%5Csqrt%7Bcos2x%7D-%5Csqrt%5B3%5D%7Bcos3x%7D%20%7D%7
salantis [7]

Answer:

\displaystyle  \lim_{x \to 0} \frac{\sqrt{cos(2x)} - \sqrt[3]{cos(3x)}}{sin(x^2)} = \frac{1}{2}

General Formulas and Concepts:

<u>Calculus</u>

Limits

Limit Rule [Variable Direct Substitution]:                                                                     \displaystyle \lim_{x \to c} x = c

L'Hopital's Rule

Differentiation

  • Derivatives
  • Derivative Notation

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Derivative Rule [Chain Rule]:                                                                                    \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Step-by-step explanation:

We are given the limit:

\displaystyle  \lim_{x \to 0} \frac{\sqrt{cos(2x)} - \sqrt[3]{cos(3x)}}{sin(x^2)}

When we directly plug in <em>x</em> = 0, we see that we would have an indeterminate form:

\displaystyle  \lim_{x \to 0} \frac{\sqrt{cos(2x)} - \sqrt[3]{cos(3x)}}{sin(x^2)} = \frac{0}{0}

This tells us we need to use L'Hoptial's Rule. Let's differentiate the limit:

\displaystyle  \lim_{x \to 0} \frac{\sqrt{cos(2x)} - \sqrt[3]{cos(3x)}}{sin(x^2)} = \displaystyle  \lim_{x \to 0} \frac{\frac{-sin(2x)}{\sqrt{cos(2x)}} + \frac{sin(3x)}{[cos(3x)]^{\frac{2}{3}}}}{2xcos(x^2)}

Plugging in <em>x</em> = 0 again, we would get:

\displaystyle \lim_{x \to 0} \frac{\frac{-sin(2x)}{\sqrt{cos(2x)}} + \frac{sin(3x)}{[cos(3x)]^{\frac{2}{3}}}}{2xcos(x^2)} = \frac{0}{0}

Since we reached another indeterminate form, let's apply L'Hoptial's Rule again:

\displaystyle \lim_{x \to 0} \frac{\frac{-sin(2x)}{\sqrt{cos(2x)}} + \frac{sin(3x)}{[cos(3x)]^{\frac{2}{3}}}}{2xcos(x^2)} = \lim_{x \to 0} \frac{\frac{-[cos^2(2x) + 1]}{[cos(2x)]^{\frac{2}{3}}} + \frac{cos^2(3x) + 2}{[cos(3x)]^{\frac{5}{3}}}}{2cos(x^2) - 4x^2sin(x^2)}

Substitute in <em>x</em> = 0 once more:

\displaystyle \lim_{x \to 0} \frac{\frac{-[cos^2(2x) + 1]}{[cos(2x)]^{\frac{2}{3}}} + \frac{cos^2(3x) + 2}{[cos(3x)]^{\frac{5}{3}}}}{2cos(x^2) - 4x^2sin(x^2)} = \frac{1}{2}

And we have our final answer.

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Limits

6 0
3 years ago
Other questions:
  • Write 5 numbers that round to 360 when rounded to the nearest ten
    8·1 answer
  • What is the product?
    9·2 answers
  • Is (4, -2) the solution of the system of equations shown
    7·1 answer
  • How many times does 33 go into 112?
    8·1 answer
  • The advertised price of a new car is dollars. The dealership is offering a $2000 rebate and a 10% discount off the price of the
    13·2 answers
  • Help me out pleaseeeee
    12·1 answer
  • Which is equivalent to $4.00?
    5·1 answer
  • Heres the lineeeeeeeeeeeeeeeeeeeeee
    8·1 answer
  • What kind of triangle is 11 13 25
    14·1 answer
  • Please help me im in a rush
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!