Answer:
<B = 47°
<C = 28°
b = AC = 28.0
Step-by-step explanation:
Given:
∆ABC
AB = c = 18
BC = a = 37
<A = 105°
Required:
Length of AC = b
measure of angle B and angle C
SOLUTION:
==>Use the sine rule, sin A/a = sinC/c to find the angle of C:
SinA = sin(105) = 0.9659
a = 37
sinC = ?
c = 18
0.9659/37 = sinC/18
Cross multiply
0.9659*18 = 37*sinC
17.3862 = 37*sinC
Divide both sides by 37
17.3862/37 = sinC
0.4699 = sinC
sinC = 0.4699
C = Sin-¹(0.4699)
C = 28.0° (nearest tenth)
==>Find angle B using sum of angles in a triangle:
Angle B = 180 - (105+28)
Angle B = 180 - 133
Angle B = 47°
==>Find length of b using sine rule, b/sinB = c/sinC:
SinC = sin(28) = 0.4695
SinB = sin(47) = 0.7314
c = 18
b = ?
b/0.7314 = 18/0.4695
Cross multiply
b*0.4695 = 18*0.7314
b*0.4695 = 13.1652
Divide both sides by 0.4695
b = 13.1652/0.4695
b = 28.0 (nearest tenth)
Si you would subtract 6x from both sides so you would have 9y=1500-6x. Then you would divide both sides by 9 and get y=166.66-6/9x. The -6/9x can be reduced to -2/3x and that is your slope or your
rise/run and the only graph that show this is the second one
The question is incomplete. Here is the complete question.
Find the measurements (the lenght L and the width W) of an inscribed rectangle under the line y = -
x + 3 with the 1st quadrant of the x & y coordinate system such that the area is maximum. Also, find that maximum area. To get full credit, you must draw the picture of the problem and label the length and the width in terms of x and y.
Answer: L = 1; W = 9/4; A = 2.25;
Step-by-step explanation: The rectangle is under a straight line. Area of a rectangle is given by A = L*W. To determine the maximum area:
A = x.y
A = x(-
)
A = -
To maximize, we have to differentiate the equation:
=
(-
)
= -3x + 3
The critical point is:
= 0
-3x + 3 = 0
x = 1
Substituing:
y = -
x + 3
y = -
.1 + 3
y = 9/4
So, the measurements are x = L = 1 and y = W = 9/4
The maximum area is:
A = 1 . 9/4
A = 9/4
A = 2.25
Answer:
transversal
Step-by-step explanation:
1. In geometry any line which passes through or intersects 2 or more line are called a transversal.
2.Transversal are generally used in geometry of Euclidean plane to decide whether the given set of lines through which transversal passes are parallel or not.
Answer:
175%
Step-by-step explanation:
1 would be 100%
3/4 would be 75%
100%+75%=175%