1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Tems11 [23]
3 years ago
5

What are the atomic binding force and energy? how do they relate to materials strength and thermal stability.

Engineering
1 answer:
Elanso [62]3 years ago
7 0

Answer:

As we know that every molecule is attached by a strong force .The force required to disassemble the atoms is know as atomic binding force or we can say that the force required to disassemble the electron from atoms is known as binding force.On the other hand the energy require to doing this is known as atomic binding energy.

If the binding force is high then it will become difficult to disassemble thermally as well as mechanically.So we can say that it have direct relationship with   materials strength and thermal stability.

You might be interested in
on the same scale for stress, the tensile true stress-true strain curve is higher than the engineeringstress-engineering strain
Bess [88]

Answer:

The condition does not hold for a compression test

Explanation:

For a compression test the engineering stress - strain curve is higher than the actual stress-strain curve and this is because the force needed in compression is higher than the force needed during Tension.  The higher the force in compression leads to increase in the area therefore for the same scale of stress the there is more stress on the Engineering curve making it higher than the actual curve.

<em>Hence the condition of : on the same scale for stress, the tensile true stress-true strain curve is higher than the engineering stress-engineering strain curve.</em><em> </em>does not hold for compression test

5 0
2 years ago
This search compares the target value with the middle element in the collection, then ignores the half of the collection in whic
love history [14]

Answer:

d) Binary

Explanation:

Binary search is a search algorithm that finds the position of a value in an ordered array. It compares the value with the element in the middle of the array, if they are not equal, half in which the value cannot be eliminated and the search continues in the remaining half until the value is found.

7 0
3 years ago
Design a half-wave recti er which provides a peak voltage of 15 V, and anaverage voltage of 3.8 V when driven by a 120 V (rms) a
nirvana33 [79]

Answer:

You need a 120V to 24V commercial transformer  (transformer 1:5), a 100 ohms resistance, a 1.5 K ohms resistance and a diode with a minimum forward current of 20 mA (could be 1N4148)

Step by step design:

  1. Because you have a 120V AC voltage supply you need an efficient way to reduce that voltage as much as possible before passing to the rectifier, for that I recommend a standard 120V to 24V transformer.  120 Vrms = 85 V and 24 Vrms = 17V = Vin
  2. Because 17V is not 15V you still need a voltage divider to step down that voltage, for that we use R1 = 100Ω and R2 = 1.3KΩ. You need to remember that more than 1 V is going to be in the diode, so for our calculation we need to consider it. Vf = (V*R2)/(R1+R2), V = Vin - 1 = 17-1 = 16V and Vf = 15, Choosing a fix resistance R1 = 100Ω and solving the equation we find R2 = 1.5KΩ
  3. Finally to select the diode you need to calculate two times the maximum current and that would be the forward current (If) of your diode. Imax = Vf/R2 = 10mA and If = 2*Imax = 20mA

Our circuit meet the average voltage (Va) specification:

Va = (15)/(pi) = 4.77V considering the diode voltage or 3.77V without considering it

6 0
3 years ago
The inner surface of a hollow cylinder is subjected to tangential and axial stresses of 40,000 and 24,000 psi, respectively. Det
Furkat [3]

Answer:

15,000 psi

Explanation:

The solution / solving is attach below.

5 0
3 years ago
What are the four categories of engineering materials used in manufacturing?
alexgriva [62]

Answer:

metals, composite, ceramics and polymers.

Explanation:

The four categories of engineering materials used in manufacturing are metals, composite, ceramics and polymers.

i) Metals: Metals are solids made up of atoms held by matrix of electrons. They are good conductors of heat and electricity, ductile and strong.

ii) Composite: This is a combination of two or more materials. They have high strength to weight ratio, stiff, low conductivity. E.g are wood, concrete.

iii) Ceramics: They are inorganic, non-metallic crystalline compounds with high hardness and strength as well as poor conductors of electricity and heat.

iv) Polymers: They  have low weight and are poor conductors of electricity and heat

8 0
2 years ago
Other questions:
  • Water at 20oC, with a free-stream velocity of 1.5 m/s, flows over a circular pipe with diameter of 2.0 cm and surface temperatur
    13·1 answer
  • Consider flow in between two parallel plates located a distance H from each other. Fluid flow is driven by the bottom plate movi
    15·1 answer
  • A six-lane freeway (three lanes in each direction) currently operates at maximum LOS C conditions. The lanes are 11 ft wide, the
    5·1 answer
  • The rate of energy transfer by work is called power. a)-True b)-False
    15·1 answer
  • Which of the following manufacturing tools machines parts by moving the part into the cutting tool (instead of moving the cuttin
    13·1 answer
  • A proposed embankment fill requires 7100 ft of compacted soil. The void ratio of the compacted fill is specified as 0.5. Four bo
    10·1 answer
  • Me ayudas plis noce ​
    14·1 answer
  • Question text
    11·1 answer
  • Characteristics of 3 types of soil​
    10·1 answer
  • ____ grinders are used to grind diameters, shoulders, and faces much like the lathe is used for turning, facing, and boring oper
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!