Answer:
the pressure reading when connected a pressure gauge is 543.44 kPa
Explanation:
Given data
tank volume (V) = 400 L i.e 0.4 m³
temperature (T) = 25°C i.e. 25°C + 273 = 298 K
air mass (m) = 3 kg
atmospheric pressure = 98 kPa
To find out
pressure reading
Solution
we have find out pressure reading by gauge pressure
i.e. gauge pressure = absolute pressure - atmospheric pressure
first we find absolute pressure (p) by the ideal gas condition
i.e pV = mRT
p = mRT / V
p = ( 3 × 0.287 × 298 ) / 0.4
p = 641.44 kPa
so
gauge pressure = absolute pressure - atmospheric pressure
gauge pressure = 641.44 - 98
gauge pressure = 543.44 kPa
Orthographic projection, common method of representing three-dimensional objects, usually by three two-dimensional drawings in each of which the object is viewed along parallel lines that are perpendicular to the plane of the drawling.
Answer:
Please check explanation for answer
Explanation:
Here, we are concerned with stating the advantages and disadvantages of using a 6 tube passes instead of a 2 tube passes of the same diameter:
<u>Advantages</u>
* By using a 6 tube passes diameter, we are increasing the surface area of the heat transfer surface
* As a result of increasing the heat transfer surface area, the rate of heat transfer automatically increases too
Thus, from the above, we can conclude that the heat transfer rate of a 6 tube passes is higher than that of a 2 tube passes of the same diameter.
<u>Disadvantages</u>
* They are larger in size and in weight when compared to a 2 tube passes of the same diameter and therefore does not find use in applications where space conservation is quite necessary.
* They are more expensive than the 2 tube passes of the same diameter and thus are primarily undesirable in terms of manufacturing costs
Why did you put this on here when you know the answer lol
Answer:
1) 1.4(D + F)
2) 1.2(D + F + T) + 1.6(L + H) + 0.5(Lr or S or R)
3) 1.2D + 1.6(Lr or S or R) + ((0.5 or 1.0)*L or 0.8W)
4) 1.2D + 1.6W + (0.5 or 1.0)*L + 0.5(Lr or S or R)
5) 1.2D + 1.0E + (0.5 or 1.0)*L + 0.2S
6) 0.9D + 1.6W + 1.6H
7) 0.9D + 1.0E + 1.6H
Explanation:
Load and Resistance Factor Design
there are 7 basic load combination of LRFD that is
1) 1.4(D + F)
2) 1.2(D + F + T) + 1.6(L + H) + 0.5(Lr or S or R)
3) 1.2D + 1.6(Lr or S or R) + ((0.5 or 1.0)*L or 0.8W)
4) 1.2D + 1.6W + (0.5 or 1.0)*L + 0.5(Lr or S or R)
5) 1.2D + 1.0E + (0.5 or 1.0)*L + 0.2S
6) 0.9D + 1.6W + 1.6H
7) 0.9D + 1.0E + 1.6H
and
here load factor for L given ( * ) mean it is permitted = 0.5 for occupancies when live load is less than or equal to 100 psf
here
D is dead load and L is live load
E is earth quake load and S is snow load
W is wind load and R is rain load
Lr is roof live load