Shown in the graph
<h2>
Explanation:</h2>
Using graph tools we can graph the function:
![g(x)=4x^2-16](https://tex.z-dn.net/?f=g%28x%29%3D4x%5E2-16)
which is the red graph shown below. As you can see, this is a parabola. The rule for vertical and horizontal shifts is as follows:
![Let \ c \ be \ a \ positive \ real \ number. \ \mathbf{Vertical \ and \ horizontal \ shifts} \\ in \ the \ graph \ of \ y=f(x) \ are \ represented \ as \ follows:](https://tex.z-dn.net/?f=Let%20%5C%20c%20%5C%20be%20%5C%20a%20%5C%20positive%20%5C%20real%20%5C%20number.%20%5C%20%5Cmathbf%7BVertical%20%5C%20and%20%5C%20horizontal%20%5C%20shifts%7D%20%5C%5C%20in%20%5C%20the%20%5C%20graph%20%5C%20of%20%5C%20y%3Df%28x%29%20%5C%20are%20%5C%20represented%20%5C%20as%20%5C%20follows%3A)
![\bullet \ Vertical \ shift \ c \ units \ \mathbf{upward}: \\ h(x)=f(x)+c \\ \\ \bullet \ Vertical \ shift \ c \ units \ \mathbf{downward}: \\ h(x)=f(x)-c \\ \\ \bullet \ Horizontal \ shift \ c \ units \ to \ the \ right \ \mathbf{right}: \\ h(x)=f(x-c) \\ \\ \bullet \ Horizontal \ shift \ c \ units \ to \ the \ left \ \mathbf{left}: \\ h(x)=f(x+c)](https://tex.z-dn.net/?f=%5Cbullet%20%5C%20Vertical%20%5C%20shift%20%5C%20c%20%5C%20units%20%5C%20%5Cmathbf%7Bupward%7D%3A%20%5C%5C%20h%28x%29%3Df%28x%29%2Bc%20%5C%5C%20%5C%5C%20%5Cbullet%20%5C%20Vertical%20%5C%20shift%20%5C%20c%20%5C%20units%20%5C%20%5Cmathbf%7Bdownward%7D%3A%20%5C%5C%20h%28x%29%3Df%28x%29-c%20%5C%5C%20%5C%5C%20%5Cbullet%20%5C%20Horizontal%20%5C%20shift%20%5C%20c%20%5C%20units%20%5C%20to%20%5C%20the%20%5C%20right%20%5C%20%5Cmathbf%7Bright%7D%3A%20%5C%5C%20h%28x%29%3Df%28x-c%29%20%5C%5C%20%5C%5C%20%5Cbullet%20%5C%20Horizontal%20%5C%20shift%20%5C%20c%20%5C%20units%20%5C%20to%20%5C%20the%20%5C%20left%20%5C%20%5Cmathbf%7Bleft%7D%3A%20%5C%5C%20h%28x%29%3Df%28x%2Bc%29)
Therefore, If we shift the red graph 9 units to the right and 1 down, our new function (let's call it
) will be:
![h(x)=4\left(x-9\right)^{2}-16-1 \\ \\ Simplifying: \\ \\ h(x)=4\left(x-9\right)^{2}-17](https://tex.z-dn.net/?f=h%28x%29%3D4%5Cleft%28x-9%5Cright%29%5E%7B2%7D-16-1%20%5C%5C%20%5C%5C%20Simplifying%3A%20%5C%5C%20%5C%5C%20h%28x%29%3D4%5Cleft%28x-9%5Cright%29%5E%7B2%7D-17)
This graph is the blue graph below. Let's verify the transformation taking the vertex of the red graph:
![(0,-16)](https://tex.z-dn.net/?f=%280%2C-16%29)
By translating the 9 units to the right and 1 down the vertex is also translated by the same rule, so:
![New \ vertex: \\ \\ (0+9,-16-1) \\ \\ (9,-17)](https://tex.z-dn.net/?f=New%20%5C%20vertex%3A%20%5C%5C%20%5C%5C%20%280%2B9%2C-16-1%29%20%5C%5C%20%5C%5C%20%289%2C-17%29)
<h2>
Learn more:</h2>
Cubic function: brainly.com/question/13773618#
#LearnWithBrainly