
Hi Pupil Here's Your Answer ::
➡➡➡➡➡➡➡➡➡➡➡➡➡
Pressure is defined as the force acting perpendicular on an unit area of the surface.
OR
The thrust per unit area is called Pressure.
let us see, on what factors the pressure depends?
Take a pin having a pointed end and a nail having blunt end. Press then against a cardboard by applying the same force. We find that the pin penetrates deep into the cardboard then the nail. In this case, force acting on two points of the cardboard is same but the area under the tip of the Pin is less than under the tip of the nail.
The effect of the forces of the scene magnitudes on the different area is different.
Conclusions : Pressure acting on the surface is inversely proportional to the area of the surface on which force acts.
⬅⬅⬅⬅⬅⬅⬅⬅⬅⬅⬅⬅⬅
Hope this helps
The number of charge drifts are 3.35 X 10⁻⁷C
<u>Explanation:</u>
Given:
Potential difference, V = 3 nV = 3 X 10⁻⁹m
Length of wire, L = 2 cm = 0.02 m
Radius of the wire, r = 2 mm = 2 X 10⁻³m
Cross section, 3 ms
charge drifts, q = ?
We know,
the charge drifts through the copper wire is given by
q = iΔt
where Δt = 3 X 10⁻³s
and i = 
where R is the resistance
R = 
ρ is the resistivity of the copper wire = 1.69 X 10⁻⁸Ωm
So, i = 
q = 
Substituting the values,
q = 3.14 X (0.02)² X 3 X 10⁻⁹ X 3 X 10⁻³ / 1.69 X 10⁻⁸ X 0.02
q = 3.35 X 10⁻⁷C
Therefore, the number of charge drifts are 3.35 X 10⁻⁷C
Answer:
-75.35°
Explanation:
Let C be the sum of the two vectors A and B. Hence, we can write the following

but since the vector C is in the -y direction,
= 0 and
= —12 m.
Thus
![B_{x} =-A_{x} =-[-Acos(180-127)]=(8)*cos(53)\\B_{x} =4.81m](https://tex.z-dn.net/?f=B_%7Bx%7D%20%3D-A_%7Bx%7D%20%3D-%5B-Acos%28180-127%29%5D%3D%288%29%2Acos%2853%29%5C%5CB_%7Bx%7D%20%3D4.81m)
similarly, we can determine
by rearranging equation (1)

so the magnitude of B is

Finally, the direction of B can be calculated as follows
Ф=
hence the vector B makes an angle of 75.35 clockwise with + x axis
Answer:
Just as distance and displacement have distinctly different meanings (despite their similarities), so do speed and velocity. Speed is a scalar quantity that refers to "how fast an object is moving." Speed can be thought of as the rate at which an object covers distance. A fast-moving object has a high speed and covers a relatively large distance in a short amount of time. Contrast this to a slow-moving object that has a low speed; it covers a relatively small amount of distance in the same amount of time. An object with no movement at all has a zero speed.
Answer:
the time at which it passes through the equilibrum position is:
t = 0.1 second
Explanation:
given
w= 4pounds
k(spring constant) = 2lb/ft
g(gravitational constant) = 10m/s² = 32ft/s²
β(initial point above equilibrum) = 1
velocity = 14ft/s
attached is an image showing the calculations, because some of the parameters aren't convenient to type.