Answer: A) because forces are what stop and start motion
Explanation:
From Newton's first law, an object tends to stay in state of rest or motion unless acted upon by an unbalanced external force. This is also known law of inertia. This is because a force can stop or start a motion. A force cause body to accelerate to decelerate otherwise the body continues with constant speed.
Answer:
It attracts ferrous materials
Explanation:
A magnet attracts ferrous materials A ferrous materials are metallic substances or conductors that can conduct heat and electricity. Example of this ferrous materials includes iron, metal etc. Since magnets only can attracts metallic substance to itself, then we can also conclude that they attract ferrous materials since ferrous materials. possesses properties of a metal.
Magnets possesses both north and south poles.
The same of the bar magnets are known to repel each other while unlike poles attract each other.
The momentum of an object is equivalent to the product of the object's mass and velocity. Computing the momentum for each ball:
A- 15 * 0.7 = 10.5
B- 5.5 * 1.2 = 6.6
C- 5.0 * 2.5 = 12.5
D- 1.5 * 5.0 = 7.5
Therefore, ball C has the greatest momentum.
Answer:
Explanation:
The magnetic force acting horizontally will deflect the wire by angle φ from the vertical
Let T be the tension
T cosφ = mg
Tsinφ = Magnetic force
Tsinφ = BiL , where B is magnetic field , i is current and L is length of wire
Dividing
Tanφ = BiL / mg
= .055 x 29 x .11 / .010 x 9.8
= 1.79
φ = 61° .
Tension T = mg / cosφ
= .01 x 9.8 / cos61
= .2 N .
Answer:
47.4 m
Explanation:
When an object is thrown upward, it rises up, it reaches its maximum height, and then it goes down. The time at which it reaches its maximum height is half the total time of flight.
In this case, the time of flight is 6.22 s, so the time the ball takes to reach the maximum height is
![t=\frac{6.22}{2}=3.11 s](https://tex.z-dn.net/?f=t%3D%5Cfrac%7B6.22%7D%7B2%7D%3D3.11%20s)
Now we consider only the downward motion of the ball: it is a free fall motion, so we can find the vertical displacement by using the suvat equation
![s=ut+\frac{1}{2}gt^2](https://tex.z-dn.net/?f=s%3Dut%2B%5Cfrac%7B1%7D%7B2%7Dgt%5E2)
where
s is the vertical displacement
u = 0 is the initial velocity
t = 3.11 s is the time
is the acceleration of gravity (taking downward as positive direction)
Solving the formula, we find
![s=\frac{1}{2}(9.8)(3.11)^2=47.4 m](https://tex.z-dn.net/?f=s%3D%5Cfrac%7B1%7D%7B2%7D%289.8%29%283.11%29%5E2%3D47.4%20m)