(a) Yes all six trig functions exist for this point in quadrant III. The only time you'll run into problems is when either x = 0 or y = 0, due to division by zero errors. For instance, if x = 0, then tan(t) = sin(t)/cos(t) will have cos(t) = 0, as x = cos(t). you cannot have zero in the denominator. Since neither coordinate is zero, we don't have such problems.
---------------------------------------------------------------------------------------
(b) The following functions are positive in quadrant III:
tangent, cotangent
The following functions are negative in quadrant III
cosine, sine, secant, cosecant
A short explanation is that x = cos(t) and y = sin(t). The x and y coordinates are negative in quadrant III, so both sine and cosine are negative. Their reciprocal functions secant and cosecant are negative here as well. Combining sine and cosine to get tan = sin/cos, we see that the negatives cancel which is why tangent is positive here. Cotangent is also positive for similar reasons.
I don’t know what answers you have but I think it’s 23.4
To reduce a fraction, divide the numerator and the denominator equally until they reach the simplest whole number possible.
In this case, the numerator (720) and the denominator (1080) can both be divided by 360 to get 2/3, our reduced fraction.
<span>2v^3 + 3v^2 + 4v + 6
= (</span><span>2v^3 + 3v^2) + (4v + 6)
= v^2 (2v + 3) + 2 (2v + 3)
= (v^2 + 2)(2v + 3)
hope it helps</span>
Responder:
c. x menos 25 menos estilo en línea fracción 4 entre 19 fin estilo paréntesis izquierdo x menos 25 paréntesis derecho igual 3
Explicación paso a paso:
Dado lo siguiente:
Cantidad original de gasolina en el tanque de combustible = x
Gasolina consumida en el primer viaje = 25 litros
Gasolina restante después del primer viaje = (x - 25) litros
Gasolina consumida en el segundo viaje = 4/19 de lo que queda, es decir;
(4/19) * (x - 25)
Gasolina restante después del segundo viaje = 3 litros
Cantidad inicial - cantidad consumida en el primer viaje - 4/19 de la cantidad restante después del primer viaje = 3
La gasolina que queda después del segundo viaje se puede modelar mediante la ecuación:
x - 25 - 4/19 (x - 25) = 3