Answer:
Written in Python:
fruit_dictionary = {}
fruit_dictionary = {'apple': 'red', 'orange': 'orange', 'banana': 'yellow'}
Explanation:
First (although, not necessary), we create an empty dictionary named fruit_dictionary on line 1
Next, we populate the dictionary using the following syntax:
{key-1:value-1, key-2:value-2,......,key-n:value-n}
In this case, the entry would be:
{'apple': 'red',
'orange': 'orange',
'banana': 'yellow'}
The items on the first column (i.e. apple, orange and banana) are the keys while the items on the second (i.e. red, orange and yellow) are the values of the dictionary
To print the items in the dictionary, you can add the following line of code:
<em>print(fruit_dictionary.items()) </em>
I am fairly sure the command for boot options is F11, and if not, then power down the system manually and turn it back on
Global source and binary.
Support for mixed-script computing environments.
Improved cross-platform data interoperability through a common codeset.
Space-efficient encoding scheme for data storage.
Reduced time-to-market for localized products.
Expanded market access.
Answer:
A. 0.0450
B. 4
C. 0.25
D. 37.68
E. 6Hz
F. -0.523
G. 1.5m/s
H. vy = ∂y/∂t = 0.045(-37.68) cos (25.12x - 37.68t - 0.523)
I. -1.67m/s.
Explanation:
Given the equation:
y(x,t) = 0.0450 sin(25.12x - 37.68t-0.523)
Standard wave equation:
y(x, t)=Asin(kx−ωt+ϕ)
a.) Amplitude = 0.0450
b.) Wave number = 1/ λ
λ=2π/k
From the equation k = 25.12
Wavelength(λ ) = 2π/25.12 = 0.25
Wave number (1/0.25) = 4
c.) Wavelength(λ ) = 2π/25.12 = 0.25
d.) Angular frequency(ω)
ωt = 37.68t
ω = 37.68
E.) Frequency (f)
ω = 2πf
f = ω/2π
f = 37.68/6.28
f = 6Hz
f.) Phase angle(ϕ) = -0.523
g.) Wave propagation speed :
ω/k=37.68/25.12=1.5m/s
h.) vy = ∂y/∂t = 0.045(-37.68) cos (25.12x - 37.68t - 0.523)
(i) vy(3.5m, 21s) = 0.045(-37.68) cos (25.12*3.5-37.68*21-0.523) = -1.67m/s.