Testing random samples of lightbulbs produced by a company to confirm they work and testing a new drug on a random sample of patients to see how effective it is at curing the flu are examples of inferential statistics. The correct option among all the options that are given in the question are option "C" and option "E".
Answer:
Step-by-step explanation:
The null hypothesis is:
H0: μ(1995)=μ(2019)
The alternative hypothesis is:
H1: μ(1995)<μ(2019)
Because Roger wants to know if mean weight of 16-old males in 2019 is more than the mean weight of 16-old males in 1995 the test only uses one tail of the z-distribution. It is not a two-sided test because in that case the alternative hypothesis would be: μ(1995)≠μ(2019).
To know the p-value, we use the z-statistic, in this case 1.89 and the significance level. Because the problem does not specify it, we will search for the p-value at a 5% significance level and at a 1%.
For a z of 1.89 and 5% significance level, the p-value is: 0.9744
For a z of 1.89 and 1% significance level, the p-value is: 0.9719
Answer:
El orden de mayor a menor es:
54.45
; 32.245
; 23.4
; 8/9
; 15/20
; 50/100
; 4/10
; 0.056
; 9/1000
Step-by-step explanation:
El mayor número será el que tenga el mayor entero, o si tienen el mismo entero será aquel que tenga el primer decimal mayor de izquierda a derecha, o si tienen el mismo se observa el siguiente decimal y así sucesivamente.
Para ordenar y comparar las cantidades es conveniente en primer lugar pasar todos los números a decimales. Para convertir una fracción en un decimal, debes dividir el numerador entre el denominador.
Entonces, en este caso el valor decimal de cada cantidad (o una aproximación) es:
23.4
15/20= 0.75
32.245
0.056
4/10= 0.4
50/100= 0.5
8/9= 0.8888
0.009
9/1000= 0.009
54.45
Entonces <u><em>el orden de mayor a menor es:
</em></u>
<u><em>
54.45
; 32.245
; 23.4
; 8/9 = 0.8888
; 15/20 = 0.75
; 50/100 = 0.5
; 4/10 = 0.4
; 0.056
; 9/1000 = 0.009</em></u>
Answer:
the first one
Step-by-step explanation: