The problem deals with fractions comparison, lets do it:
21/30 > 2/3
we begin solving:
21 > (2/3)*30
21 > 2*10
<span>21 > 20
</span>therefore the proposed inequality is true, <span>21/30 > 2/3
You can solve as well getting same denominator for both fractions and comparing directly, in this case we need to get 2/3 to be divided by 30:
2/3 = (10/10)(2/3) = 20/30
So we have:
</span><span>21/30 > 2/3
</span>which is equal to:
<span>21/30 > 20/30
</span>and we compare directly because both fractions are divided by the same number, and we can see that the inequality is true.
The coefficient is what the bariable is multiplied by. In this case, the variable is x and it is multiplied by 4
I draw the two triangles, see the picture attached.
As you can see, angle 1 and 2 are vertically opposite angles because they are formed by the same two crossing lines and they face each other.
Angles <span>ABQ and QPR, as well as angles BAQ and QRP, are alternate interior angles because they are formed by </span><span>two parallel lines crossed by a transversal, and they are inside the two lines on opposite sides of the transversal.</span>
Hence, Allison's correct claims are:
1 = 2 because they are vertically opposite angles. BAQ = QRP because they are alternate interior angles. Therefore Allison, in order to prove her claim, can use the AA similarity theorem: if two angles of a triangle are congruent to two angles of the other triangle, then the two triangles are similar.
That’s for #1.I can’t read the points for #2
Answer:
-18-6x=6+18x
-18-6=18x+6x
24x=-24
x=-1
Step-by-step explanation: