Answer:

Step-by-step explanation:
Please see the attached picture.
Let's find the value of the opposite side, XZ.
Applying Pythagoras' Theorem,
(XZ)² +(XY)²= (ZY)²
(XZ)² +16²= 65²
(XZ)²= 4225 -256 <em>(</em><em>bring</em><em> </em><em>constant</em><em> </em><em>to</em><em> </em><em>1</em><em> </em><em>side</em><em>)</em>
(XZ)²= 3969 <em>(</em><em>simplify</em><em>)</em>
<em>Square</em><em> </em><em>root</em><em> </em><em>both</em><em> </em><em>sides</em><em>,</em>
XZ= 
XZ= 63 <em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em>(simplify)</em>
sinY
= XZ/ ZY

Answer: 
<u>Step-by-step explanation:</u>
EQ1: x + y = 12 --> x = 12 - y
EQ2: xy = 15
Substitute x = 12-y into EQ2 to solve for y:
(12 - y)y = 15
12y - y² = 15
0 = y² - 12y + 15
↓ ↓ ↓
a=1 b= -12 c=15

Now, let's solve for x:

Lastly, find x² + y² :



Answer:
The time now is 7 pm
Step-by-step explanation:
Suppose that now is the time T.
We know that:
"if time is four hours from now, the time left till midnight would be a quarter that if it is one hour from now".
Then:
if we define midnight as 12, and we assume that T is in the pm range.
Then the "time left till midnigth, assuming that the time is four hours from now" will be written as (12 - (T + 4))
With this in mind, we can write the problem as:
12 - (T + 4) = (1/4)*( 12 - (T + 1))
Now we can solve this for T.
12 - T - 4 = (1/4)*(12 - T - 1)
8 - T = (1/4)*(11 - T)
4*(8 - T) = 11 - T
32 - 4*T = 11 - T
32 - 11 = -T + 4*T
21 = 3*T
21/3 = T
7 = T
Then T = 7 pm
The time now is 7 pm
Answer:
The answer is B
Step-by-step explanation:
I can’t help sorry i wish I could