You would need to know the dimensions of the pyramid and wether it was triangle or square bottomed
surface area (S) of a right rectangular solid is:
S = 2*L*W + 2*L*H + 2*W*H (equation 1)
where:
L = length
W = width
H = height
-----
you have:
L = 7
W = a
H = 4
-----
formula becomes:
S = 2*7*a + 2*7*4 + 2*a*4
simplify:
S = 14*a + 56 + 8*a
combine like terms:
S = 22*a + 56
-----
answer is:
S = 22*a + 56 (equation 2)
-----
to prove, substitute any value for a in equation 2:
let a = 15
S = 22*a + 56 (equation 2)
S = 22*15 + 56
S = 330 + 56
S = 386
-----
since a = 15, then W = 15 because W = a
go back to equation 1 and substitute 15 for W:
S = 2*L*W + 2*L*H + 2*W*H (equation 1)
where:
L = length
W = width
H = height
-----
you have:
L = 7
W = 15
H = 4
-----
equation 1 becomes:
S = 2*7*15 + 2*7*4 + 2*15*4
perform indicated operations:
S = 210 + 56 + 120
S = 386
-----
surface area is the same using both equations so:
equations are good.
formula for surface area of right rectangle in terms of a is:
S = 22*a + 56
-----
Answer:
-24x + 18y
Step-by-step explanation:
6 x -4x = -24x
6 x 3y = 18y
The period is 2.
Normally the period of sin(x) is 2pi, but the pi inside the sin(pix) is a horizontal compression by a factor of 1/pi. So 2pi·1/pi = 2
The "1/2" and "+3" do not impact the period. Those just impact the amplitude (vertical aspect) of the graph.