1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Pani-rosa [81]
3 years ago
13

Question no. e. and f. please help me !!!!!​

Mathematics
2 answers:
erastovalidia [21]3 years ago
8 0
If you need help again get that app photomath it is amazing(not sponsered)
Verizon [17]3 years ago
4 0

Answer: see proofs below

<u>Step-by-step explanation:</u>

Proofs are like a puzzle that you have to unravel.

You can manipulate the left side to get the right side (LHS → RHS)

                                                or

You can manipulate the right side to get the left side (RHS → LHS)

You will need to use Pythagorean Identities, Sum and Difference Identities, and/or Double Angle Identities when manipulating one of the sides.

Use the following Identities:

cos 2A = cos²A - sin²A

sin 2A = 2 cosA · sinA    <em>Note that A can be substituted with 2A  </em>      

sin 3A = 3 sinA - 4sin³A

cos 3A = 4cos³A - 3cosA

***********************************************************************************

e) Prove: 4 sin A · cos³A - 4 cos A · sin³A = sin(4A)

LHS → RHS

Given:         4 sin A · cos³A - 4 cos A · sin³A

Factor:        4 sin A · cos x (cos²A - sin²A)

                  2(2 sin A · cos A)(cos²A - sin²A)

Double Angle Identity:  2(sin 2·A)(cos 2·A)

                                       2 sin (2A) · cos (2A)

Double Angle Identity:  sin (2·2A)

                                       sin 4A

Proven:  sin 4A = sin 4A   \checkmark

*****************************************************************************************

f) Prove: 4 sin³A · cos 3A + 4 cos³A · sin 3A = 3 sin(4A)

LHS → RHS

Given:          4 sin³A · cos 3A + 4 cos³A · sin 3A

Triple Angle Identity:   4sin³A (4cos³A - 3 cosA) + 4cos³A (3sinA - 4sin³A)

Expand:      16sin³A · cos³A - 12sin³A · cosA + 12cos³A · sinA - 16sin³A · cos³A

Simplify:      12cos³A · sinA - 12sin³A · cosA

Expand:        6cos²A(2cosA · sinA) - 6sin²A(2cosA · sinA)

Double Angle Identity: 6cos²A(sin 2A) - 6sin²A(sin 2A)

Factor:       6sin 2A (cos²A - sin²A)

Double Angle Identity:  6sin 2A (cos 2A)

                                       3(2sin 2A · cos 2A)

Simplify:     3sin (2·2A)

                  3 sin 4A

Proven: 3sin 4A = 3sin4A   \checkmark

You might be interested in
Mr. Lucpas wased 3/8 of his larundy. His son washed 1/3 of it. Who washed most of the laundry?ahow much of the larndy still need
zavuch27 [327]

Answer:

I think it is 2/24.........

7 0
3 years ago
Three of the angles of a
irina1246 [14]

Answer:

Angles of a quadrilateral add up to 360

so x+36+72+144=360

x+252=360

x=360-252

x=108

So B is the correct answer

Step-by-step explanation:

4 0
3 years ago
Quadrilateral ABCDABCD has vertices AA (-2, 2), BB (4, 5), CC (3, 0) and DD (-3, -3). What are the coordinates of the midpoint o
Arada [10]
Check the picture below.

the quadrilateral is a parallelogram, thus the diagonals bisect each other, so, we could have used either diagonal, and get the same midpoint.


\bf \textit{middle point of 2 points }\\ \quad \\&#10;\begin{array}{lllll}&#10;&x_1&y_1&x_2&y_2\\&#10;%  (a,b)&#10;B&({{ 4}}\quad ,&{{ 5}})\quad &#10;%  (c,d)&#10;D&({{ -3}}\quad ,&{{ -3}})&#10;\end{array}\qquad&#10;%   coordinates of midpoint &#10;\left(\cfrac{{{ x_2}} + {{ x_1}}}{2}\quad ,\quad \cfrac{{{ y_2}} + {{ y_1}}}{2} \right)&#10;\\\\\\&#10;\left(\cfrac{{{ -3+4}} }{2}\quad ,\quad \cfrac{-3+5}{2} \right)

6 0
4 years ago
The hypotenuse of a right triangle measures 15 cm and one of its legs
Kay [80]

Answer:

[see below]

Step-by-step explanation:

Use the Pythagorean Theorem.

a^2+b^2=c^2

'c' will be the hypotenuse.

The hypotenuse is 15 cm.  One of the legs is 5 cm.

5^2+b^2=15^2\\\\25 + b^2 = 225\\\\25-25+b^2=225-25\\\\b^2=200\\\\\sqrt{b^2}=\sqrt{200}\\\\  b=14.1421356237..., -14.1421356237

14.1421356237 ≈ 14.1

The other leg should be about 14.1 cm.

Hope this helps.

4 0
3 years ago
Read 2 more answers
What is the product? <br> (-2d^2+s)(5d^2-6s)
Anna71 [15]

Answer:

Option 1: -10d⁴ + 17d²s - 6s²

General Formulas and Concepts:

<u>Algebra I</u>

  • Terms/Coefficients
  • Expand by FOIL

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

(-2d² + s)(5d² - 6s)

<u>Step 2: Expand</u>

  1. FOIL:                                                                                                                  -10d⁴ + 12d²s + 5d²s - 6s²
  2. Combine like terms:                                                                                         -10d⁴ + 17d²s - 6s²
6 0
3 years ago
Other questions:
  • Find the approximate surface-area-to-volume ratio of the Moon. The radius of the Moon is 1,080 miles.
    13·1 answer
  • A factory made 845 pairs of shoes in January. These shoes were sent to 3 shoe stores and 1 outlet mall. The numer of pair of sen
    14·1 answer
  • Suppose R = {1, 3, 5, 7, 9, 11, 13, 15, 17} and D = {3, 6, 9, 12, 15, 18, 21, 24, 27}. What is R ∩ D? (
    15·1 answer
  • You work in the tech support department. An employee wants to reduce a photo so it's 1/4 the size the original, but the software
    13·1 answer
  • Express the area of the entire rectangle. Your answer should be a polynomial in standard form, (x+4) (x+5)
    9·1 answer
  • Joe made a model of a door out of a piece of cardboard. The amount of cardboard used for the square, bottom portion of the model
    11·1 answer
  • Please help me please
    13·1 answer
  • Round 2,861 to the nearest hundred
    8·2 answers
  • X - 7 &lt; -20 inequalify
    10·1 answer
  • Simplify the expression <br><br> 12y plus 5x plus 8y
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!