Answer:
46°
Step-by-step explanation:
Given that :
Angle, A = 66°
Angle B = 68°
The sum of angles in a triangle is given by :
A + B + C = 180° (sum if angles una triangle)
66° + 68° + C = 180°
134° + C = 180°
C = 180° - 134°
C = 46°
Hence, angle C is 46°
The coordinates are 68276528
Answer:
A sample of 18 is required.
Step-by-step explanation:
We have that to find our
level, that is the subtraction of 1 by the confidence interval divided by 2. So:
Now, we have to find z in the Z-table as such z has a p-value of
.
That is z with a pvalue of
, so Z = 1.88.
Now, find the margin of error M as such
In which
is the standard deviation of the population and n is the size of the sample.
A previous study indicated that the standard deviation was 2.2 days.
This means that 
How large a sample must be selected if the company wants to be 92% confident that the true mean differs from the sample mean by no more than 1 day?
This is n for which M = 1. So



Rounding up:
A sample of 18 is required.
"y2 − 25" is the polynomial among the following choices given in the question that <span>is a difference of two squares. The correct option among all the options that are given in the question is the first option. The other choices are incorrect. I hope that this is the answer that has actually come to your great help.</span>
9514 1404 393
Answer:
-0.16
Step-by-step explanation:
The 'a' value can be found by looking at the difference between the y-value of a point 1 unit from the vertex, and the y-value of the vertex.
Here, that is a negative fraction of a unit. If we assume the value is a rational number that can be accurately determined from this graph, then we can find it by looking for a point where the graph crosses a grid intersection. It looks like such grid points are (-7, 0) and (3, 0). The vertex is apparently (-2, 4), so the vertex form of the equation is ...
y = a(x +2)^2 +4
Using the point (3, 0), we have ...
0 = a(3 +2)^2 +4 . . . . . fill in the values of x and y
-4 = 25a . . . . . . . . . . subtract 4; next, divide by 25
a = -4/25 = -0.16