Given : f(x)= 3|x-2| -5
f(x) is translated 3 units down and 4 units to the left
If any function is translated down then we subtract the units at the end
If any function is translated left then we add the units with x inside the absolute sign
f(x)= 3|x-2| -5
f(x) is translated 3 units down
subtract 3 at the end, so f(x) becomes
f(x)= 3|x-2| -5 -3
f(x) is translated 4 units to the left
Add 4 with x inside the absolute sign, f(x) becomes
f(x)= 3|x-2 + 4| -5 -3
We simplify it and replace f(x) by g(x)
g(x) = 3|x + 2| - 8
a= 3, h = -2 , k = -8
I believe he made 169 cups of fruit salad, or is it a trick question?
Answer:
Step-by-step explanation:
mid point formula = (x1+x2/2 , y1+y2/2)
hence putt the values we get,
mid point = ( -1+3/2 , 7-2/2)
= (1 , 2.5)
Answer: 120
"A analog clock is diveded up into 12 sectors, based on the numbers 1-12. one sector represents 30 degrees (360/12=30). if the hour hand is directly on the 10, and the minute hand is on the 2, that means there are 4 sectors of 30 degree between then, thus they are 120 degree apart (30*4=120)."
Answer:
0.12 ± 1.96 * √(0.12(0.88) / 100)
Step-by-step explanation:
Confidence interval :
Phat ± Zcritical * √(phat(1 -phat) / n)
Phat = 12/100 = 0.12
1 - phat = 0.88
Zcritical at 95% = 1.96
Hence, we have :
0.12 ± 1.96 * √(0.12(0.88) / 100)
0.12 ± 1.96 * 0.0324961
0.12 ± 0.0636924
Lower boundary = (0.12 - 0.0636924) = 0.0563
Upper boundary = 0.12 + 0.0636924 = 0.1837