3 is B my dude and the reason nobody answered is because thousands of questions are asked every day. So not every question can be answered. It doesn't have to do with being lazy.
In short, when light illuminates a piece of metal, the light kicks off electrons from the metal’s surface and these electrons can be detected as a change in the electric charge of the metal or as an electric current. Hence the name: photo for light and electric for the current. The explanation behind this simple phenomenon opened the door to revolutionary modern physics concepts regarding the composition of light, quantum mechanics, and what is now referred to as the “wave-particle duality” of nature. The wave-particle duality of nature is perhaps one of the greatest mysteries of our universe and a very interesting philosophical subject! Your goal in this lab is to reproduce the photoelectric effect for yourselves and to understand how it demonstrates the particle behavior of light.
True. You're suppose to answer true or false, right?
Answer: Condensation of moisture in the air onto the glasses.
Explanation:
When you come from a cold environment into a warm ski lodge, the glasses are at a much lower temperature than that of the lodge.
Because the air in the room contains moisture (water vapor), it condenses on a surface whose temperature is lower than the dew point of the room.
Answer:
a) see attached, a = g sin θ
b)
c) v = √(2gL (1-cos θ))
Explanation:
In the attached we can see the forces on the sphere, which are the attention of the bar that is perpendicular to the movement and the weight of the sphere that is vertical at all times. To solve this problem, a reference system is created with one axis parallel to the bar and the other perpendicular to the rod, the weight of decomposing in this reference system and the linear acceleration is given by
Wₓ = m a
W sin θ = m a
a = g sin θ
b) The diagram is the same, the only thing that changes is the angle that is less
θ' = 9/2 θ
c) At this point the weight and the force of the bar are in the same line of action, so that at linear acceleration it is zero, even when the pendulum has velocity v, so it follows its path.
The easiest way to find linear speed is to use conservation of energy
Highest point
Em₀ = mg h = mg L (1-cos tea)
Lowest point
Emf = K = ½ m v²
Em₀ = Emf
g L (1-cos θ) = v² / 2
v = √(2gL (1-cos θ))