Answer:
Option C
Maximum potential energy is at point R.
Explanation:
Potential energy is a product of mass, acceleration due to gravity and height ie
PE=mgh where PE is the potential energy, m is mass of an object, g is acceleration due to gravity whose value is normally taken as 9.81 and h is height. Since at point R we have the maximum height, the potential energy will be highest at this point.
Answer:
f = 878,080 N
Explanation:
mass of pile driver (m) = 2100 kg
distance of pile driver to steel beam (s) = 5 m
depth of steel driven (d) = 12 cm = 0.12 m
acceleration due to gravity (g0 = 9.8 m/s^{2}
calculate the average force exerted on the pile driver by the beam.
- from work done = force x distance
- work done = change in potential energy of the pile driver
- equating the two equations above we have
force x distance = m x g x (s - d)
f x 0.12 = 2100 x 9.8 x (5- (-0.12))
d = - 0.12 because the steel beam went down at we are taking its
initial position to be an origin point which is 0
f = ( 2100 x 9.8 x (5- (-0.12)) ) ÷ 0.12
f = 878,080 N
Answer:
In the air
Explanation:
There are three states of matter:
- Solids: in solids, the particles are tightly bond together by strong intermolecular forces, so they cannot move freely - they can only vibrate around their fixed position
- Liquids: in liquids, particles are more free to move, however there are still some intermolecular forces keeping them close to each other
- Gases: in gases, particles are completely free to move, as the intermolecular forces between them are negligible
For this reason, it is generally easier to compress/expand the volume of a gas with respect to the volume of a liquid.
In this problem, we are comparing water (which is a liquid) with air (which is a gas). From what we said above, this means that the change in volume is larger in the air rather than in the water.
(2)<span>less than 750 N.( if the downward acceleration of elevator were g,then answer would be 0 N.)</span>