1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mamaluj [8]
3 years ago
8

Find the equivalent resistance, current, and voltage across each resistor when the specified resistors are connected across a 20

V battery. Part (a) uses two resistors with resistance values that can be set with the animation sliders, and you can use the animation to verify your calculation. In Part (b), three resistors are specified. (a) Two resistors are connected in series across a 20 V battery, as illustrated above. Let R1

Physics
2 answers:
timama [110]3 years ago
3 0

Answer:

Explanation:

The question is incomplete. Here is the complete question.

"Find the equivalent resistance, the current supplied by the battery and the current through each resistor when the specified resistors are connected across a 20-V battery. Part (a) uses two resistors with resistance values that can be set with the animation sliders, and you can use the animation to verify your calculation. In part (b), three resistors are specified. (a) Two resistors are connected in series across a 20-V battery. Let R1 = 1 Ω and R2 = 2 Ω. Rea = (b) Add a third resistor to the circuit in series. Let R1 = 1 Ω, R2 = 2 Ω, and R3 = 3 Ω"

Using ohms law formula to solve the problem

E = IRt

E is the supply voltage

I is the total current

Rt is the total equivalent resistant.

a) Given two resistances

R1 = 1ohms and R2 = 2ohms

If the resistors are Connected in series across a 20V supply voltage,

-Equivalent resistance = R1+R2

= 1ohms + 2ohms

= 3ohms

- In a series connected circuit, same current flows through the resistors.

Using the formula E = IRt

I = E/Rt

I = 20/3

I = 6.67A

The current in both resistors is 6.67A

- Different voltage flows across a series connected circuit.

Using the formula V = IR

V is the voltage across each resistor

I is the current in each resistor

For 1ohms resistor,

V = 6.67×1

V = 6.67Volts

For 2ohms resistor

V = 6.67×2

V = 13.34Volts

b) If the resistors are three

R1 = 1ohms, R2 = 2ohms R3 = 3ohms

- Total equivalent resistance = 1+2+3

= 6ohms

- Current in each resistor I = E/Rt

I = 20/6

I = 3.33A

Since the same current flows through the resistors, the current across each of them is 3.33A

- Voltage across them is calculated as shown:

V = IR

For 1ohm resistor

V = 3.33×1

V = 3.33volts

For 2ohms resistor

V = 3.33×2

V = 6.66volts

For 3ohms resistor

V = 3.33×3

V = 9.99volts

alukav5142 [94]3 years ago
3 0

Complete Question

The complete question is shown on the first uploaded image

Answer:

For a

R_{eq}= 3 \Omega

I = 6.667 A

\Delta V_1 = 6.667  \ V

\Delta V_2 = 13.334  \ Volt

For  B

R_{eq}= 6 \Omega

I = 3.333 A

\Delta V_1 = 3.333 \ Volt

\Delta V_2 = 6.667 \ Volt  

\Delta V_3 = 10 \ Volt  

Explanation:

 From the question we are told that

           The voltage of the battery is  V = 20 \ V

           The  first resistance is R_1 = 1 \Omega

           The second resistance is R_2 = 2 \Omega

The equivalent resistance is mathematically represented as

           R_{eq} = 1+2

                  R_{eq}= 3 \Omega

The current  is mathematically represented as      

           I = \frac{V}{R_{eq}}

So

           I = \frac{20}{3}

            I = 6.667 A

The first voltage change is mathematically represented as

               \Delta V_1  = V_1 - V_o

               \Delta V_1 = (R_1  * I) - 0

               \Delta V_1 = 6.667  \ V

The second voltage change is mathematically represented  as

               \Delta V_2 = V_2 - V_o

               \Delta V_2 = (R_2  * I  )  - 0

               \Delta V_2 =  2* 6.667     \ Volt

                 \Delta V_2 = 13.334  \ Volt    

For  B

      V = 20 V

      The  first resistance is R_1 = 1 \Omega  

     The second resistance is R_2 = 2 \Omega

     The third  resistance is R_3 = 3 \Omega

The equivalent resistance is  

        R_{eq} =  1+ 2 +3

               R_{eq}= 6 \Omega

The current is mathematically  evaluated as

          I = \frac{20}{6}

              I = 3.333 A

The first voltage change is mathematically represented as

               \Delta V_1  = V_1 - V_o

               \Delta V_1 = (R_1  * I) - 0

               \Delta V_1 = (1 *3.333)  \ V

               \Delta V_1 = 3.333 \ Volt

The second voltage change is mathematically represented  as

               \Delta V_2 = V_2 - V_o

               \Delta V_2 = (R_2  * I  )  - 0

               \Delta V_2 =  2* 3.333   \ Volt

                 \Delta V_2 = 6.667 \ Volt    

The second voltage change is mathematically represented  as

               \Delta V_3 = V_3 - V_o

               \Delta V_3 = (R_3  * V  )  - 0

               \Delta V_3 =  3 * 3.333   \ Volt

                 \Delta V_3 = 10 \ Volt    

You might be interested in
What is black body radiation? Explain in detail.
tangare [24]

An object that absorbs all radiation falling on it, at all wavelengths, is called a black body. When a black body is at a uniform temperature, its emission has a characteristic frequency distribution that depends on the temperature. Its emission is called black-body radiation

hope it helps

3 0
2 years ago
I have no clue what to do please help.
Yakvenalex [24]

Answer:

Step one : read the directions

Step two: complete the assignment

Explanation:

3 0
2 years ago
A tank is full of water. Find the work W required to pump the water out of the spout. (Use 9.8 m/s2 for g. Use 1000 kg/m3 as the
Sergio039 [100]

Answer:

W = 1.06 MJ

Explanation:

- We will use differential calculus to solve this problem.

- Make a differential volume of water in the tank with thickness dx. We see as we traverse up or down the differential volume of water the side length is always constant, hence, its always 8.

- As for the width of the part w we see that it varies as we move up and down the differential element. We will draw a rectangle whose base axis is x and vertical axis is y. we will find the equation of the slant line that comes out to be y = 0.5*x. And the width spans towards both of the sides its going to be 2*y = x.

- Now develop and expression of Force required:

                                             F = p*V*g

                                             F = 1000*(2*0.5*x*8*dx)*g

                                             F = 78480*x*dx

- Now, the work done is given by:

                                             W = F.s

- Where, s is the distance from top of hose to the differential volume:

                                             s = (5 - x)

- We have the work as follows:

                                            dW = 78400*x*(5-x)dx

- Now integrate the following express from 0 to 3 till the tank is empty:

                                           W = 78400*(2.5*x^2 - (1/3)*x^3)

                                           W = 78400*(2.5*3^2 - (1/3)*3^3)

                                           W = 78400*13.5 = 1058400 J

 

5 0
3 years ago
Climate change is causing the average annual temperature to increase. Birds that have adapted to temperatures in their environme
Luba_88 [7]
Are their any multiple choice questions? Also you said, "<span>Birds that have adapted to temperatures in their environment must find a way to adapt." It says they already adapted lol</span>
4 0
3 years ago
Read 2 more answers
Driving your Ferrari through the Italian countryside at a speedy 88 m/s, you approach an opera diva singing a high C (1,046 Hz).
MrRissso [65]

Answer:

You will hear the note E₆

Explanation:

We know that:

Your speed = 88m/s

Original frequency = 1,046 Hz

Sound speed = 340 m/s

The Doppler effect says that:

f' = \frac{v \pm v0 }{v \mp vs}*f

Where:

f = original frequency

f' = new frequency

v = velocity of the sound wave

v0 = your velocity

vs = velocity of the source, in this case, the source is the diva, we assume that she does not move, so vs = 0.

Replacing the values that we know in the equation we have:

f' = \frac{340 m/s + 88m/s}{340 m/s} *1,046 Hz = 1,316.73 Hz

This frequency is close to the note E₆ (1,318.5 Hz)

7 0
3 years ago
Other questions:
  • A uniform electric field of 2 kNC-1 is in the x-direction. A point charge of 3 μC initially at rest at the origin is released. W
    8·1 answer
  • PLEASE THINK ABOUT THIS AND EXPLAIN FULLY :)
    5·1 answer
  • In a plate glass factory, sheets of glass move along a conveyor belt at a speed of 15.0 cm/s. An automatic cutting tool descends
    12·1 answer
  • In a parallel portion of a series-parallel circuit, the voltage across the branches can be found by multiplying the sum of the b
    7·1 answer
  • A snail is at the bottom of a well, 115 feet deep. On day 1, it starts climbing up the side. That night it rests and slips down
    11·1 answer
  • A mechanic needs to replace the motor for a merry-go-round. The merry-go-round should accelerate from rest to 1.5 rad/s in 7.0 s
    15·1 answer
  • Light would most likely be transmitted through A. A mirror B. A stone C. A leaf D. A window
    13·2 answers
  • Balanced forces acting on an object
    8·1 answer
  • A substance whose shape can easily change is a
    5·1 answer
  • An artificial sattelite is moving in a circular orbit of radius 42250km calculate its speed if it takes 24 hours to revolve arou
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!