1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mamaluj [8]
3 years ago
8

Find the equivalent resistance, current, and voltage across each resistor when the specified resistors are connected across a 20

V battery. Part (a) uses two resistors with resistance values that can be set with the animation sliders, and you can use the animation to verify your calculation. In Part (b), three resistors are specified. (a) Two resistors are connected in series across a 20 V battery, as illustrated above. Let R1

Physics
2 answers:
timama [110]3 years ago
3 0

Answer:

Explanation:

The question is incomplete. Here is the complete question.

"Find the equivalent resistance, the current supplied by the battery and the current through each resistor when the specified resistors are connected across a 20-V battery. Part (a) uses two resistors with resistance values that can be set with the animation sliders, and you can use the animation to verify your calculation. In part (b), three resistors are specified. (a) Two resistors are connected in series across a 20-V battery. Let R1 = 1 Ω and R2 = 2 Ω. Rea = (b) Add a third resistor to the circuit in series. Let R1 = 1 Ω, R2 = 2 Ω, and R3 = 3 Ω"

Using ohms law formula to solve the problem

E = IRt

E is the supply voltage

I is the total current

Rt is the total equivalent resistant.

a) Given two resistances

R1 = 1ohms and R2 = 2ohms

If the resistors are Connected in series across a 20V supply voltage,

-Equivalent resistance = R1+R2

= 1ohms + 2ohms

= 3ohms

- In a series connected circuit, same current flows through the resistors.

Using the formula E = IRt

I = E/Rt

I = 20/3

I = 6.67A

The current in both resistors is 6.67A

- Different voltage flows across a series connected circuit.

Using the formula V = IR

V is the voltage across each resistor

I is the current in each resistor

For 1ohms resistor,

V = 6.67×1

V = 6.67Volts

For 2ohms resistor

V = 6.67×2

V = 13.34Volts

b) If the resistors are three

R1 = 1ohms, R2 = 2ohms R3 = 3ohms

- Total equivalent resistance = 1+2+3

= 6ohms

- Current in each resistor I = E/Rt

I = 20/6

I = 3.33A

Since the same current flows through the resistors, the current across each of them is 3.33A

- Voltage across them is calculated as shown:

V = IR

For 1ohm resistor

V = 3.33×1

V = 3.33volts

For 2ohms resistor

V = 3.33×2

V = 6.66volts

For 3ohms resistor

V = 3.33×3

V = 9.99volts

alukav5142 [94]3 years ago
3 0

Complete Question

The complete question is shown on the first uploaded image

Answer:

For a

R_{eq}= 3 \Omega

I = 6.667 A

\Delta V_1 = 6.667  \ V

\Delta V_2 = 13.334  \ Volt

For  B

R_{eq}= 6 \Omega

I = 3.333 A

\Delta V_1 = 3.333 \ Volt

\Delta V_2 = 6.667 \ Volt  

\Delta V_3 = 10 \ Volt  

Explanation:

 From the question we are told that

           The voltage of the battery is  V = 20 \ V

           The  first resistance is R_1 = 1 \Omega

           The second resistance is R_2 = 2 \Omega

The equivalent resistance is mathematically represented as

           R_{eq} = 1+2

                  R_{eq}= 3 \Omega

The current  is mathematically represented as      

           I = \frac{V}{R_{eq}}

So

           I = \frac{20}{3}

            I = 6.667 A

The first voltage change is mathematically represented as

               \Delta V_1  = V_1 - V_o

               \Delta V_1 = (R_1  * I) - 0

               \Delta V_1 = 6.667  \ V

The second voltage change is mathematically represented  as

               \Delta V_2 = V_2 - V_o

               \Delta V_2 = (R_2  * I  )  - 0

               \Delta V_2 =  2* 6.667     \ Volt

                 \Delta V_2 = 13.334  \ Volt    

For  B

      V = 20 V

      The  first resistance is R_1 = 1 \Omega  

     The second resistance is R_2 = 2 \Omega

     The third  resistance is R_3 = 3 \Omega

The equivalent resistance is  

        R_{eq} =  1+ 2 +3

               R_{eq}= 6 \Omega

The current is mathematically  evaluated as

          I = \frac{20}{6}

              I = 3.333 A

The first voltage change is mathematically represented as

               \Delta V_1  = V_1 - V_o

               \Delta V_1 = (R_1  * I) - 0

               \Delta V_1 = (1 *3.333)  \ V

               \Delta V_1 = 3.333 \ Volt

The second voltage change is mathematically represented  as

               \Delta V_2 = V_2 - V_o

               \Delta V_2 = (R_2  * I  )  - 0

               \Delta V_2 =  2* 3.333   \ Volt

                 \Delta V_2 = 6.667 \ Volt    

The second voltage change is mathematically represented  as

               \Delta V_3 = V_3 - V_o

               \Delta V_3 = (R_3  * V  )  - 0

               \Delta V_3 =  3 * 3.333   \ Volt

                 \Delta V_3 = 10 \ Volt    

You might be interested in
An airplane is flying from Dallas, Texas to Pensacola, Florida. Flying at maximum velocity, it encounters strong winds moving at
jenyasd209 [6]

Answer:

G. It will take twice as long.

Explanation:

Let's call v the original speed of the plane and d the distance between Dallas and Pensacola. The time the plane originally takes to complete the flight is

t=\frac{d}{v}

In this problem, we are told that the plane encounters wind moving at half of its speed: \frac{v}{2}, in the opposite direction. This means that the new speed of the plane is

v'=v-\frac{v}{2}=\frac{v}{2}

And so, the time the plane takes now to complete the flight is

t'=\frac{d}{v/2}=2\frac{d}{v}=2t

So, the plane takes twice the time as before.

4 0
2 years ago
A uniform magnetic field is perpendicular to the plane of a circular loop of diameter 13 cm formed from wire of diameter 2.6 mm
I am Lyosha [343]

Answer:

Rate of change of magnetic field is 3.466\times 10^3T/sec        

Explanation:

We have given diameter of the circular loop is 13 cm = 0.13 m

So radius of the circular loop r=\frac{0.13}{2}=0.065m

Length of the circular loop L=2\pi r=2\times 3.14\times 0.065=0.4082m

Wire is made up of diameter of 2.6 mm

So radius r=\frac{2.6}{2}=1.3mm=0.0013m

Cross sectional area of wire A=\pi r^2=3.14\times0.0013^2=5.30\times 10^{-6}m^2

Resistivity of wire \rho =2.18\times 10^{-8}m

Resistance of wire R=\frac{\rho L}{A}=\frac{2.18\times 10^{-8}\times 0.4082}{5.30\times 10^{-6}}=1.67\times 10^{-3}ohm

Current is given i = 11 A

So emf  e=11\times 1.67\times 10^{-3}=0.0183volt

Emf induced in the coil is e=-\frac{d\Phi }{dt}=-A\frac{dB}{dt}

0.0183=5.30\times 10^{-6}\times \frac{dB}{dt}

\frac{dB}{dt}=3.466\times 10^3=T/sec

8 0
3 years ago
What is the average acceleration during the time interval 0 seconds to 10 seconds?
Hunter-Best [27]

Answer:

yea its D  .

Explanation:

3 0
3 years ago
A force of 20N acts upon a body whose weight is 9.8 N. What is the mass of the body and how much is its acceleration?
zloy xaker [14]

Answer:

Explanation:

The two triangles are similar what is the length of DE

7 0
2 years ago
Read 2 more answers
Infer why the output force exerted by a rake must be less than input force?
adell [148]
<h3><u>Answer and Explanation</u>;</h3>
  • input force refers to the force exerted on a machine, also known as the effort, while the output force is the force machines produce or the Load. The ratio of output force to input force gives the mechanical advantage of a simple machine
  • <em><u>The output force exerted by the rake must be less than the input force because one has to use force while raking. The force used to move the rake is the input force. </u></em>
  • <em><u>The rake is not going to be able to convert all of the input force into output force, the force the rake applies to move the leaves, because of friction.</u></em>
5 0
3 years ago
Other questions:
  • 18. What do you call a change in state from a liquid to a gas?
    13·2 answers
  • Which of the following changes will always increase the efficiency of a thermodynamic engine? Choose all correct statements.
    11·2 answers
  • You drive on Interstate 10 from San Antonio to Houston, half the time at 54 km/h and the other half at 118 km/h. On the way back
    13·2 answers
  • A 15kg projectile is moving with a velocity of 25m/s calculate its momentum
    13·1 answer
  • A diver wants to jump from a board, the initial height is 10 meters and he wants to reach a horizontal distance of 2 meters. Wha
    5·1 answer
  • A security guard walks at a steady pace, traveling 190 m in one trip around the perimeter of a building. It takes him 260 s to m
    7·1 answer
  • Describe how personal fitness contributes to physical,mental/emotional,social health
    14·1 answer
  • A 17 kg box experiences an applied force of +175 N and a force of friction of -125 N. While experiencing these unbalanced forces
    15·1 answer
  • Two forces one of 12N and another of 5N act on abody in such away that they makes an angel of 90 with each other, what is the re
    7·1 answer
  • A radar receiver indicates that a pulse return as an echo in 20 μs after it was sent. How far away is the reflecting object? (c
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!