Answer:
hhhhhhhhhhhhhhhhhhhhh
Explanation:
sjdnxjwodj1oeixjwkw9dijwqoisjd1
sjssusidej
Answer:
when u find out pls lmk! i have the same question and I've been stuck for a while lol
(a) The spring stiffness constant of the spring is 18,392 N/m.
(b) The time the car was in contact with the spring before it bounces off in the opposite direction is 0.23 s.
<h3>Kinetic energy of the car</h3>
The kinetic energy of the car is calculated as follows;
K.E = ¹/₂mv²
K.E = ¹/₂ x 950 x 22²
K.E = 229,900 J
<h3>Stiffness constant of the spring</h3>
The stiffness constant of the spring is calculated as follows;
K.E = U = ¹/₂kx²
k = 2U/x²
k = (2 x 229,900)/(5)²
k = 18,392 N/m
<h3>Force exerted on the spring</h3>
F = kx
F = 18,392 x 5
F = 91,960 N
<h3>Time of impact</h3>
F = mv/t
t = mv/F
t = (950 x 22)/(91960)
t = 0.23 s
Learn more about spring constant here: brainly.com/question/1968517
#SPJ4
The floor exerts 20 N of force on the chair
Explanation:
We can answer this question by using Newton's third law, which states that:
<em>"When an object A exerts a force (called action) on an object B, object B exerts an equal and opposite force (called reaction) on object A"</em>
In this problem, we can identify:
- Object A as the chair
- Object B as the floor
This means that the force of 20 N exerted by the chair on the floor is the action, and so the force exerted by the floor on the chair is the reaction. Newton's third law states that these two forces are equal and opposite: therefore, the force exerted by the floor on the chair is also 20 N, but in the opposite direction.
Learn more about Newton's third law:
brainly.com/question/11411375
#LearnwithBrainly