By just looking at ur whole numbers...12 + 3 + 5 = 20...and thats not even counting ur decimals..so by adding ur decimals, u know that it will be over 20.
Unit rate = total buttons/ total controllers
Unit rate = 26/2 = 13
Unit rate: 13 buttons per controller
Answer:
The angular velocity is 6.72 π radians per second
Step-by-step explanation:
The formula of the angular velocity is ω =
, where v is the linear velocity and r is the radius of the circle
The unit of the angular velocity is radians per second
∵ The diameter of the tire is 25 inches
∵ The linear velocity is 15 miles per hour
- We must change the mile to inch and the hour to seconds
∵ 1 mile = 63360 inches
∵ 1 hour = 3600 second
∴ 15 miles/hour = 15 × 
∴ 15 miles/hour = 264 inches per second
Now let us find the angular velocity
∵ ω =
∵ v = 264 in./sec.
∵ d = 25 in.
- The radius is one-half the diameter
∴ r =
× 25 = 12.5 in.
- Substitute the values of v and r in the formula above to find ω
∴ ω = 
∴ ω = 21.12 rad./sec.
- Divide it by π to give the answer in terms of π
∴ ω = 6.72 π radians per second
The angular velocity is 6.72 π radians per second
Answer:
24
Step-by-step explanation:
(72/-9) / (-1/3)
72/-9) x (-3/1)
(72)*(-3) = - 216/ -9
= 24
See the attached image for the graph. Specifically figure 2 is the graph you want. You can leave the red points on the graph or decide to erase them (leave behind the blue line though).
To generate each of the red points, you'll plug in various x values to get corresponding y values.
For instance, plug in x = 0 and we get...
y = -|x-6| - 6
y = -|0-6| - 6
y = -|-6| - 6
y = -6 - 6
y = -12
So when x = 0, the y value is -12. The x and y value pair up to get (x,y) = (0,-12)
Another example: plug in x = 2
y = -|x-6| - 6
y = -|2-6| - 6
y = -|-4| - 6
y = -4 - 6
y = -10
So the point (2,-10) is on the graph
The idea is to generate as many points as possible so we get an idea of what this thing looks like.
Generate enough points, and you'll get what you see in Figure 1 (see attached image)
Then draw a line through all of the points. The more points you use, the more accurate the drawing. Doing that will generate the blue function curve you see in Figure 2 (also attached)