<em><u>Answer</u></em><em><u> </u></em><em><u>:</u></em><em><u>-</u></em><em><u> </u></em><em><u> </u></em><em><u>Opti</u></em><em><u>on</u></em><em><u> </u></em><em><u>B</u></em><em><u> </u></em><em><u>is</u></em><em><u> </u></em><em><u>co</u></em><em><u>rrect</u></em><em><u> </u></em><em><u>!</u></em><em><u>!</u></em>
x = 4
<em><u>Step</u></em><em><u> </u></em><em><u>by</u></em><em><u> </u></em><em><u>step</u></em><em><u> </u></em><em><u>explan</u></em><em><u>ation</u></em><em><u> </u></em><em><u>:</u></em><em><u>-</u></em><em><u> </u></em>
[ <em><u>Ref</u></em><em><u>er</u></em><em><u> to the</u></em><em><u> attachment</u></em> ]
Answer: 24 coins
Step-by-step explanation:
Answer:
subtract 6.5 by 9.75
Step-by-step explanation:
9/12 =.75
6/12=.5
9.75-6.5=3.25
hope this helps
°_°
It should be A because for every one cup of milk, x, there is four times as much flour. This means to get flour, you multiply x by 4.
Answer:
The expected cost of the company for a 3000 tires batch is $120255
Step-by-step explanation:
Recall that given a probability of defective tires p, we can model the number of defective tires as a binomial random variable. For 3000 tires, if we have a probability p of having a defective tire, the expected number of defective tires is 3000p.
Let X be the number of defective tires. We can use the total expectation theorem, as follows: if there are
events that partition the whole sample space, and we have a random variable X over the sample space, then
.
So, in this case, we have the following
.
Let Y be the number non defective tires. then X+Y = 3000. So Y = 3000-X. Then E(Y) = 3000-E(X). Then, E(Y) = 2949.
Finally, note that the cost of the batch would be 40Y+45X. Then
