1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Morgarella [4.7K]
3 years ago
12

the cafeteria has 2 cases of tuna and 6 single cans of tuna. in all, there are 75 cans of tuna. How many cans of tuna are in a c

ase
Mathematics
2 answers:
Nastasia [14]3 years ago
7 0

Answer:63


Step-by-step explanation:


andreyandreev [35.5K]3 years ago
5 0
I think it may be 63?
You might be interested in
A cake decorator rolls a piece of stiff paper to form a cone. She cuts off the tip of the cone and uses it as a funnel to pour d
Nimfa-mama [501]

Answer:

Step-by-step explanation:

Use the formula for volume of a cone

V = 1/3 pi r^2 (h)

V = 1/3 pi 66^2 (18)

V= 1/3 pi 4356(18)

V = 1/3 pi 78408

V = 1/3 264,201.12

V = 82,067.04cm^3

5 0
3 years ago
Please help me to prove this!​
Sophie [7]

Answer:  see proof below

<u>Step-by-step explanation:</u>

Given: A + B = C                → A = C - B

                                          → B = C - A

Use the Double Angle Identity:     cos 2A = 2 cos² A - 1

                                             → (cos 2A + 1)/2 = cos² A

Use Sum to Product Identity: cos A + cos B = 2 cos [(A + B)/2] · 2 cos [(A - B)/2]

Use Even/Odd Identity: cos (-A) = cos (A)

<u>Proof LHS → RHS:</u>

LHS:                     cos² A + cos² B + cos² C

\text{Double Angle:}\qquad \dfrac{\cos 2A+1}{2}+\dfrac{\cos 2B+1}{2}+\cos^2 C\\\\\\.\qquad \qquad \qquad =\dfrac{1}{2}\bigg(2+\cos 2A+\cos 2B\bigg)+\cos^2 C\\\\\\.\qquad \qquad \qquad =1+\dfrac{1}{2}\bigg(\cos 2A+\cos 2B\bigg)+\cos^2 C

\text{Sum to Product:}\quad 1+\dfrac{1}{2}\bigg[2\cos \bigg(\dfrac{2A+2B}{2}\bigg)\cdot \cos \bigg(\dfrac{2A-2B}{2}\bigg)\bigg]+\cos^2 C\\\\\\.\qquad \qquad \qquad =1+\cos (A+B)\cdot \cos (A-B)+\cos^2 C

\text{Given:}\qquad \qquad 1+\cos C\cdot \cos (A-B)+\cos^2C

\text{Factor:}\qquad \qquad 1+\cos C[\cos (A-B)+\cos C]

\text{Sum to Product:}\quad 1+\cos C\bigg[2\cos \bigg(\dfrac{A-B+C}{2}\bigg)\cdot \cos \bigg(\dfrac{A-B-C}{2}\bigg)\bigg]\\\\\\.\qquad \qquad \qquad =1+2\cos C\cdot \cos \bigg(\dfrac{A+(C-B)}{2}\bigg)\cdot \cos \bigg(\dfrac{-B-(C-A)}{2}\bigg)

\text{Given:}\qquad \qquad =1+2\cos C\cdot \cos \bigg(\dfrac{A+A}{2}\bigg)\cdot \cos \bigg(\dfrac{-B-B}{2}\bigg)\\\\\\.\qquad \qquad \qquad =1+2\cos C \cdot \cos A\cdot \cos (-B)

\text{Even/Odd:}\qquad \qquad 1+2\cos C \cdot \cos A\cdot \cos B\\\\\\.\qquad \qquad \qquad \quad =1+2\cos A \cdot \cos B\cdot \cos C

LHS = RHS: 1 + 2 cos A · cos B · cos C = 1 + 2 cos A · cos B · cos C   \checkmark

5 0
3 years ago
Do birds And dogs reincarnate
vovangra [49]

Answer:

no

Step-by-step explanation:

4 0
4 years ago
HELP PLS<br> Solve for x<br> x=[?]<br> 3x + 2 6x - 20
Sloan [31]

Step-by-step explanation:

Remember that the sum of angles on a straight line are supplementary. (180°)

Therefore 3x + 2 + 6x - 20 = 180.

=> 9x - 18 = 180

=> 9x = 198

=> x = 22.

3 0
3 years ago
HELP 1-6 ME PLEASE (35 POINTS)
makvit [3.9K]
1. $1.90
5. $2.74
6. $2.25
7 0
3 years ago
Other questions:
  • Please help asap! leaf plot
    12·2 answers
  • Any number with a negative exponents will always be
    8·2 answers
  • What is the value of x for which<br>3/4=x/12​
    11·1 answer
  • Eva rode her bike at a steady speed to her grandmother's house, which was eight miles away, the ride took 40 minutes how many mi
    14·2 answers
  • What is the solution of...
    13·2 answers
  • What are the greatest numbers : 4, -8, 4, 8, 7, -3, -9, 2, 6, 1, -5, 5, -2, 0.
    8·1 answer
  • Jana wrote the expression 5n + 3 as part of a problem she was solving.
    9·2 answers
  • Find the slope of the line y<br> =2x + 3/7
    14·1 answer
  • 5
    5·1 answer
  • How do I solve this? ​
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!