1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Evgesh-ka [11]
3 years ago
15

For what value of c is the function defined below continuous on (-\infty,\infty)?

Mathematics
1 answer:
kozerog [31]3 years ago
4 0
f(x)= \left \{ {{x^2-c^2,x \ \textless \  4} \atop {cx+20},x \geq 4} \right


It's clear that for x not equal to 4 this function is continuous. So the only question is what happens at 4.
<span>A function, f, is continuous at x = 4 if 
</span><span>\lim_{x \rightarrow 4} \  f(x) = f(4)

</span><span>In notation we write respectively
</span>\lim_{x \rightarrow 4-} f(x) \ \ \ \text{ and } \ \ \ \lim_{x \rightarrow 4+} f(x)

Now the second of these is easy, because for x > 4, f(x) = cx + 20. Hence limit as x --> 4+ (i.e., from above, from the right) of f(x) is just <span>4c + 20.
</span>
On the other hand, for x < 4, f(x) = x^2 - c^2. Hence 
\lim_{x \rightarrow 4-} f(x) = \lim_{x \rightarrow 4-} (x^2 - c^2) = 16 - c^2

Thus these two limits, the one from above and below are equal if and only if
 4c + 20 = 16 - c²<span> 
 Or in other words, the limit as x --> 4 of f(x) exists if and only if
 4c + 20 = 16 - c</span>²

c^2+4c+4=0&#10;\\(c+2)^2=0&#10;\\c=-2

That is to say, if c = -2, f(x) is continuous at x = 4. 

Because f is continuous for all over values of x, it now follows that f is continuous for all real nubmers (-\infty, +\infty)

You might be interested in
A window is shaped like a parallelogram
Stolb23 [73]

Answer:

Do the area divided by the base on a calculator for the answer

3 0
2 years ago
Read 2 more answers
Two polygons are similar. The corresponding angles of the polygons are- A congruent B proportional C regular D similar​
EleoNora [17]

9514 1404 393

Answer:

  A congruent

Step-by-step explanation:

In similar polygons, corresponding sides are proportional, and corresponding angles are <em><u>congruent</u></em>.

7 0
3 years ago
Which expression is equivalent to 1/3 divided by 1/6
leonid [27]

Answer:

The answer is A

Step-by-step explanation:

cross mutliply

1×6=6

1×3=3

divide the answers

result: 2

I hope this helps

5 0
2 years ago
I don't know this please help no links Brainliest
Illusion [34]

Answer:

y=x+1

Step-by-step explanation:

Rise over run. The line starts positive one and goes up one and over one.

Hope this helps!

4 0
3 years ago
I need help with my math homework. The questions is: Find all solutions of the equation in the interval [0,2π).
Aleksandr-060686 [28]

Answer:

\frac{7\pi}{24} and \frac{31\pi}{24}

Step-by-step explanation:

\sqrt{3} \tan(x-\frac{\pi}{8})-1=0

Let's first isolate the trig function.

Add 1 one on both sides:

\sqrt{3} \tan(x-\frac{\pi}{8})=1

Divide both sides by \sqrt{3}:

\tan(x-\frac{\pi}{8})=\frac{1}{\sqrt{3}}

Now recall \tan(u)=\frac{\sin(u)}{\cos(u)}.

\frac{1}{\sqrt{3}}=\frac{\frac{1}{2}}{\frac{\sqrt{3}}{2}}

or

\frac{1}{\sqrt{3}}=\frac{-\frac{1}{2}}{-\frac{\sqrt{3}}{2}}

The first ratio I have can be found using \frac{\pi}{6} in the first rotation of the unit circle.

The second ratio I have can be found using \frac{7\pi}{6} you can see this is on the same line as the \frac{\pi}{6} so you could write \frac{7\pi}{6} as \frac{\pi}{6}+\pi.

So this means the following:

\tan(x-\frac{\pi}{8})=\frac{1}{\sqrt{3}}

is true when x-\frac{\pi}{8}=\frac{\pi}{6}+n \pi

where n is integer.

Integers are the set containing {..,-3,-2,-1,0,1,2,3,...}.

So now we have a linear equation to solve:

x-\frac{\pi}{8}=\frac{\pi}{6}+n \pi

Add \frac{\pi}{8} on both sides:

x=\frac{\pi}{6}+\frac{\pi}{8}+n \pi

Find common denominator between the first two terms on the right.

That is 24.

x=\frac{4\pi}{24}+\frac{3\pi}{24}+n \pi

x=\frac{7\pi}{24}+n \pi (So this is for all the solutions.)

Now I just notice that it said find all the solutions in the interval [0,2\pi).

So if \sqrt{3} \tan(x-\frac{\pi}{8})-1=0 and we let u=x-\frac{\pi}{8}, then solving for x gives us:

u+\frac{\pi}{8}=x ( I just added \frac{\pi}{8} on both sides.)

So recall 0\le x.

Then 0 \le u+\frac{\pi}{8}.

Subtract \frac{\pi}{8} on both sides:

-\frac{\pi}{8}\le u

Simplify:

-\frac{\pi}{8}\le u

-\frac{\pi}{8}\le u

So we want to find solutions to:

\tan(u)=\frac{1}{\sqrt{3}} with the condition:

-\frac{\pi}{8}\le u

That's just at \frac{\pi}{6} and \frac{7\pi}{6}

So now adding \frac{\pi}{8} to both gives us the solutions to:

\tan(x-\frac{\pi}{8})=\frac{1}{\sqrt{3}} in the interval:

0\le x.

The solutions we are looking for are:

\frac{\pi}{6}+\frac{\pi}{8} and \frac{7\pi}{6}+\frac{\pi}{8}

Let's simplifying:

(\frac{1}{6}+\frac{1}{8})\pi and (\frac{7}{6}+\frac{1}{8})\pi

\frac{7}{24}\pi and \frac{31}{24}\pi

\frac{7\pi}{24} and \frac{31\pi}{24}

5 0
3 years ago
Other questions:
  • My friend works at the mall downtown.What is the subject of the sentence?
    5·2 answers
  • What is 21 divided by 15???????????????
    15·2 answers
  • Lauren, Rachel and Becca started a business over the summer. Their income was $500. The girls put in different amounts of work,
    13·1 answer
  • PLEASE HELP ASAP!
    9·1 answer
  • How many times does 9 go into 204​
    5·1 answer
  • Help me ASAP PLEASE thanks<br><br> Please show work <br> Random answers will be moderated
    14·1 answer
  • Please someone help I need help been stuck on this for the longest
    7·1 answer
  • Find the missing dimension<br> Height.
    9·1 answer
  • Find 83% of 52 Do NOT round your answer
    10·2 answers
  • What is the difference for 1/2 and 3/8
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!